Purpose Of Review: In an attempt to reduce waiting list mortality in liver transplantation, less-than-ideal quality donor livers from extended criteria donors are increasingly accepted. Predicting the outcome of these organs remains a challenge. Machine perfusion provides the unique possibility to assess donor liver viability pretransplantation and predict postreperfusion organ function.
Recent Findings: Assessing liver viability during hypothermic machine perfusion remains challenging, as the liver is not metabolically active. Nevertheless, the levels of flavin mononucleotide, transaminases, lactate dehydrogenase, glucose and pH in the perfusate have proven to be predictors of liver viability. During normothermic machine perfusion, the liver is metabolically active and in addition to the perfusate levels of pH, transaminases, glucose and lactate, the production of bile is a crucial criterion for hepatocyte viability. Cholangiocyte viability can be determined by analyzing bile composition. The differences between perfusate and bile levels of pH, bicarbonate and glucose are good predictors of freedom from ischemic cholangiopathy.
Summary: Although consensus is lacking regarding precise cut-off values during machine perfusion, there is general consensus on the importance of evaluating both hepatocyte and cholangiocyte compartments. The challenge is to reach consensus for increased organ utilization, while at the same time pushing the boundaries by expanding the possibilities for viability testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224566 | PMC |
http://dx.doi.org/10.1097/MOT.0000000000001152 | DOI Listing |
Liver Transpl
January 2025
Abdominal Center Department, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (IRCCS ISMETT), University of Pittsburgh Medical Center Italy (UPMCI), Palermo, Italy.
Cardiovasc Diagn Ther
December 2024
Operational Research Center in Healthcare, Near East University, Nicosia, Turkey.
Background: Cardiovascular diseases (CVDs) continue to be the world's greatest cause of death. To evaluate heart function and diagnose coronary artery disease (CAD), myocardial perfusion imaging (MPI) has become essential. Artificial intelligence (AI) methods have been incorporated into diagnostic methods such as MPI to improve patient outcomes in recent years.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (HS) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. HS is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations.
View Article and Find Full Text PDFLiver Transpl
October 2024
Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria.
Hypothermic oxygenated machine perfusion (HOPE) preconditions liver grafts before transplantation. While beneficial effects on patient outcomes were demonstrated, biomarkers for viability assessment during HOPE are scarce and lack validation. This study aims to validate the predictive potential of perfusate flavin mononucleotide (FMN) during HOPE to enable the implementation of FMN-based assessment into clinical routine and to identify safe organ acceptance thresholds.
View Article and Find Full Text PDFLiver Transpl
October 2024
Department of Surgery, Transplant Institute, Tampa General Hospital, University of South Florida School of Medicine, Tampa, Florida, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!