Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202400436 | DOI Listing |
Small Methods
December 2024
Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs.
View Article and Find Full Text PDFJ Clin Orthop Trauma
May 2024
Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India.
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by the progressive breakdown of joint cartilage and underlying bone, affecting millions globally. Traditional research models, including in-vitro cell cultures and in-vivo animal studies, have provided valuable insights but exhibit limitations in replicating the complex human joint environment. This review article focuses on the transformative role of Organ-on-Chip (OoC) and Joint-on-Chip (JoC) technologies in OA research.
View Article and Find Full Text PDFNat Rev Rheumatol
April 2022
Department of Developmental BioEngineering, TechMed Centre, University of Twente, Enschede, Netherlands.
Arthritis affects millions of people worldwide. With only a few disease-modifying drugs available for treatment of rheumatoid arthritis and none for osteoarthritis, a clear need exists for new treatment options. Current disease models used for drug screening and development suffer from several disadvantages and, most importantly, do not accurately emulate all facets of human joint diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!