Three-level T-type converters are necessary interfaces for distributed energy resources to interact with the public grid. Naturally, designing a control strategy, featuring superior dynamics and strong robustness, is a promising solution to guarantee the efficient operation of converters. This article presents an improved finite-time control (IFTC) strategy for three-level T-type converters to enhance the dynamic performance and anti-disturbance capacity. The IFTC strategy integrates a dual-loop structure to regulate the dc-link voltage and grid currents. Specifically, the voltage regulation loop employs a finite-time adaptive controller that can counteract load disturbances without relying on current sensors. In the current tracking loop, finite-time controllers combined with a command filter are constructed to obtain fast and accurate current tracking. In this loop, the command filter is utilized to avoid calculating the derivative of current references. Theoretical analysis and experimental results demonstrate the IFTC strategy's effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.04.035DOI Listing

Publication Analysis

Top Keywords

three-level t-type
12
t-type converters
12
finite-time adaptive
8
control strategy
8
strategy three-level
8
iftc strategy
8
current tracking
8
tracking loop
8
command filter
8
high-performance finite-time
4

Similar Publications

Three-level T-type converters are necessary interfaces for distributed energy resources to interact with the public grid. Naturally, designing a control strategy, featuring superior dynamics and strong robustness, is a promising solution to guarantee the efficient operation of converters. This article presents an improved finite-time control (IFTC) strategy for three-level T-type converters to enhance the dynamic performance and anti-disturbance capacity.

View Article and Find Full Text PDF

Compared with traditional two-level inverters, multilevel inverters have many solid-state switches and complex composition methods. Therefore, diagnosing and treating inverter faults is a prerequisite for the reliable and efficient operation of the inverter. Based on the idea of intelligent complementary fusion, this paper combines the genetic algorithm-binary granulation matrix knowledge-reduction method with the extreme learning machine network to propose a fault-diagnosis method for multi-tube open-circuit faults in T-type three-level inverters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!