X-ray absorption near-edge structure (XANES) spectroscopy is a new method for the characterization of active pharmaceutical ingredients. XANES spectra show unique features depending on the electronic states of the X-ray absorbing elements and provide information about the chemical environment that affects the electronic states. In this study, six bisphosphonate hydrate crystals were used to investigate, for the first time, how the phosphorus K-edge XANES spectra are affected by the interatomic interactions and charged states of phosphonate moieties. Phosphorus K-edge XANES spectra showed several differences among the bisphosphonates. In particular, the chlorine atoms covalently bonded near the phosphonate and the number of electric charges of the phosphonate moieties seemed to have large effects on peak shape in XANES spectra. Unique shapes of the XANES spectra demonstrated that differences in interactions at the oxygen atoms of the phosphonate moieties could change the shapes of the XANES spectrum peaks to the extent that each material was distinguished based on the spectra. Since slight differences in interatomic interactions and charged states lead to variations in the spectra, XANES spectroscopy could be widely applied as the fingerprint method to evaluate active pharmaceutical ingredients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c24-00148 | DOI Listing |
J Phys Chem A
January 2025
Institute of high energy physics, Chinese academy of sciences, Beijing 100049, China.
The determination of three-dimensional structures (3D structures) is crucial for understanding the correlation between the structural attributes of materials and their functional performance. X-ray absorption near edge structure (XANES) is an indispensable tool to characterize the atomic-scale local 3D structure of the system. Here, we present an approach to simulate XANES based on a customized 3D graph neural network (3DGNN) model, XAS3Dabs, which takes directly the 3D structure of the system as input, and the inherent relation between the fine structure of spectrum and local geometry is considered during the model construction.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
The fact that the photoabsorption spectrum of a material contains information about the atomic structure, commonly understood in terms of multiple scattering theory, is the basis of the popular extended X-ray absorption spectroscopy (EXAFS) technique. How much of the same structural information is present in other complementary spectroscopic signals is not obvious. Here we use a machine learning approach to demonstrate that within theoretical models that accurately predict the EXAFS signal, the extended near-edge region does indeed contain the EXAFS-accessible structural information.
View Article and Find Full Text PDFData Brief
October 2024
Department of Physics and Astronomy, UTRGV, Edinburg, TX, 78539, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!