Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122148 | DOI Listing |
Gels
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Ghent University: Universiteit Gent, Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.
Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Technical University of MunichTUM School of Natural Sciences, Department of Chemistry, WACKER-Chair of Macromolecular Chemistry, Lichtenbergstraße 485748 Garching, Germany.
Herein, novel, superabsorbent, and pH-responsive hydrogels obtained by the photochemical cross-linking of hydrophilic poly(vinylphosphonates) are introduced. First, statistical copolymers of diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP) are synthesized via rare earth metal-mediated group-transfer polymerization (REM-GTP) yielding similar molecular weights ( = 127-142 kg/mol) and narrow polydispersities ( < 1.12).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Ernst-Berl-Institute of Technical and Macromolecular Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
Hyper-cross-linked polymers (HCPs) enable the tailored synthesis of functionalized materials and provide a versatile design strategy for porous macroligands. Based on the prototypical triphenylphosphine (PPh) monomer, we investigate the role of the involved cross-linking reagents in the formation of polyphosphines and evaluate structure-activity relations for application in the catalytic CO hydrogenation: namely by varying the Friedel-Crafts catalyst, the cross-linker unit and the degree of cross-linking. The study of monomeric reactivities shows that phosphines are insufficiently activated by iron chloride catalyzed cross-linking and that the stronger aluminum chloride is required to ensure PPh incorporation.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, Ghent 9000, Belgium.
Hydroxyapatite (HAP) and amorphous calcium phosphate (ACP) nanoparticles were incorporated into a thiol-ene clickable gelatin network to elucidate to what extent osteogenic differentiation of human dental pulp- and adipose-derived stem cells (HDPSCs/HASCs) could be further boosted. ACP nanoparticles increased the specific surface area by 23% and reduced the density by 13% while maintaining a comparable particle size (ACP: 25 ± 3 nm; HAP: 27 ± 3 nm). Overall, the incorporation of ceramic nanoparticles did not significantly alter the mechanical properties of the ceramic-containing composites compared to the unsubstituted thiol-ene network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!