Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the cutting processability of cellulose nanofibril (CNF) films by continuous wave laser is important for precise shape processing that closely follows the design pattern. In this study, laser cutting of films made of surface-carboxylated CNFs with various counterionic species was performed to explore the factors that control the cutting processability. The cut width and the thermally affected width are mainly controlled by the laser irradiation energy per unit length. The processed cross section is tapered and rises above the film thickness. NMR analysis suggests that the pyrolysates contain water-soluble cello-oligosaccharides, the molecular weight of which varies with the type of CNF film. We consequently demonstrated that the COOH-type CNF film is preferable to the COONa-type CNF film for reducing the coloration residue and for processing the film into a shape that best follows the designed processing pattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!