Aims: Parkinson's disease (PD) is characterized by loss of dopamine neurons in the brain, which leads to motor dysfunction; excessive inflammation induces neuronal death. This study aimed to determine the most effective exercise modality to improve motor dysfunction in PD by comparing three different exercise regimens (low-intensity treadmill, high-intensity treadmill, and swimming).
Materials And Methods: The rat model for PD was established through stereotaxic surgery, inducing unilateral 6-OHDA (6-hydroxydopamine) lesions. The low-intensity treadmill regimen exerted better protective effects on neurological and motor functions in a rat model of unilateral 6-OHDA-induced PD compared to high-intensity treadmill and swimming. The most suitable exercise regimen and the optimal duration of daily exercise (15 or 30 min) on motor activity and oxidative stress parameters were evaluated.
Key Findings: Comparison of 15 and 30 min low-intensity treadmill regimens (10 m/min) revealed 30 min daily exercise was the optimal duration and had more favorable impacts on neurological and motor function. Furthermore, we assessed the neuroprotective effects of exercising for 15 and 30 min per day for either four or ten weeks; 30 min of daily exercise for ten weeks improved mitochondrial function, the antioxidant defense system, neurotrophic factors, and muscle mass, and thereby provided protection against dopaminergic neuron loss, and motor dysfunction in rats with 6-OHDA-induced PD.
Significance: 30 min of daily low-intensity treadmill exercise over 10 weeks resulted in heightened mitochondrial function in both muscle and brain tissues, therefore, yielded a neuroprotective effect against the loss of dopaminergic neurons and motor dysfunction in PD rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2024.122733 | DOI Listing |
Brain Topogr
January 2025
Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFBiomater Adv
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:
Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
Purpose Of Review: Complex regional pain syndrome (CRPS) is a chronic condition characterized by disproportional pain typically affecting an extremity. Management of CRPS is centered around specific symptomatology, which tends to be a combination of autonomic dysfunction, nociceptive sensitization, chronic inflammation, and/or motor dysfunction. Targeting the autoimmune component of CRPS provides a way to both symptomatically treat as well as minimize progression of CRPS.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!