Increased expression of the kynurenine pathway in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection.

Acta Trop

Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.

Published: August 2024

Angiostrongylus cantonensis is the major cause of eosinophilic meningitis worldwide. The imbalance of neurotoxic and neuroprotective metabolites in the kynurenine pathway (KP) have been suggested to contribute to the pathogenesis of central nervous system (CNS) infection. We hypothesized that KP may also be involved in parasitic eosinophilic meningitis. BALB/c mice were orally infected with 40 A. cantonensis L3, intraperitoneal dexamethasone at a dose of 500 µg/kg/day was administered from the seventh day of infection until the end of the study. The Evans blue method was used to analyze blood-brain barrier (BBB) dysfunction, and indoleamine 2,3-dioxygenase (IDO) proteins levels was measured by Western blot, immunohistochemistry (IHC), and immunofluorescence. Tryptophan and kynurenine concentrations were analyzed by IHC and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The concentrations of Evans blue, IDO, tryptophan and kynurenine in the different groups of mice were compared using the nonparametric Kruskal-Wallis test. BBB dysfunction was found in mice with eosinophilic meningitis. The administration of dexamethasone significantly decreased the amount of Evans blue. An increased IDO expression was shown in Western blot, IHC and immunofluorescence following 2-3 weeks infection. Increased tryptophan and kynurenine expressions in the brain and cerebrospinal fluid (CSF) were also found in IHC and LC-MS/MS studies. The administration of dexamethasone significantly decreased the amount of IDO, tryptophan and kynurenine. In conclusion, A. cantonensis infection inducing BBB damage, then increased the influx of tryptophan into CSF. The administration of dexamethasone significantly decreased the amount of IDO, tryptophan and kynurenine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2024.107251DOI Listing

Publication Analysis

Top Keywords

tryptophan kynurenine
20
eosinophilic meningitis
16
evans blue
12
ido tryptophan
12
administration dexamethasone
12
dexamethasone decreased
12
decreased amount
12
kynurenine pathway
8
mice eosinophilic
8
angiostrongylus cantonensis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!