Incorporating starch, which is a potential biodegradable substitute for petroleum-based polymers, into conventional polymers is challenging owing to limitations in processability and weak-performing resulting materials. Herein, corn starch/polyvinyl alcohol (PVA) blend films (starch: PVA ratio of 50:50) were prepared via the solvent casting method using glycerol as a plasticizer and with varying concentrations of maleic acid as the crosslinking agent. Fourier transform infrared spectroscopy revealed the molecular interactions of the maleic acid crosslinker with the polymeric network of starch and PVA through an ester linkage. The properties of the films were strongly dependent on the maleic acid concentration. An increasing maleic acid concentration imparted hydrophobicity to the film; therefore, water swelling was significantly reduced, and water resistance was enhanced. The film containing 20 wt% maleic acid exhibited excellent barrier properties, with the lowest oxygen and water vapor transmission rates of 0.5 ± 0.2 cc/m⋅day and 232.3 ± 5.4 g/m⋅day, respectively. Moreover, the mechanical properties of the film improved with increasing crosslinking. This study demonstrates that the addition of maleic acid leads to an improvement in the overall performance of starch/PVA blend films. Therefore, maleic acid-crosslinked films can be used as barrier materials in food packaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132495 | DOI Listing |
J Pestic Sci
November 2024
Bacillus Tech LLC.
The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:
Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India. Electronic address:
Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
A microwave-strengthened supramolecular adhesive by introducing maleic acid amide bonds into the cross-linked networks of catechol-based monomers and iron oxide nanoparticles is reported. Under microwave irradiation, the supramolecular adhesive can be rapidly heated up, causing the transformation from maleic acid amide bonds to maleimide bonds and thus the increase of its cohesive strength. The supramolecular adhesive can flexibly bond substrates like pressure sensitive adhesives during the bonding procedure and shows an adhesion strength of 0.
View Article and Find Full Text PDFACS Environ Au
January 2025
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-Ku, Kobe 657-8501, Japan.
Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!