A burgeoning interest has recently focused on the development of nanomedicine to integrate noninvasive photothermal therapy (PTT) and chemodynamic therapy (CDT) for synergistic tumor treatments, owing to PTT's amplification effect on CDT. However, challenges emerge as hyperthermia often induces an unwarranted overexpression of cytoprotective heat shock proteins (HSPs), thereby curtailing PTT efficacy. Additionally, the nearly neutral tumor intracellular pH (pH ≈ 7.2) that handicaps the Fenton reaction poses a leading limitation to CDT. Addressing these hurdles, we introduce EVP, a nanomedicine developed through the straightforward assembly of epigallocatechin gallate (EGCG), vanadium sulfate (VOSO), and Pluronic F-127 (PF127). EVP comprehensively downregulates overexpressed HSPs (HSP 60, 70, 90) through the collaborative action of EGCG and vanadyl (VO). Moreover, the tumor intracellular pH-processed Fenton-like reaction by VO ensures highly efficient hydroxyl radicals (OH) production in cytosols, overcoming the stringent acidity requirement for CDT. Additionally, the hyperthermia induced by PTT augments OH production, further enhancing CDT efficacy. In vitro and in vivo experiments validate EVP's excellent biocompatibility and potent tumor inhibition, highlighting its substantial potential in tumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132481DOI Listing

Publication Analysis

Top Keywords

fenton reaction
8
heat shock
8
shock proteins
8
tumor intracellular
8
cdt
5
tumor
5
egcg-vanadium nanomedicine
4
nanomedicine neutral
4
neutral fenton
4
reaction activity
4

Similar Publications

Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.

Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.

View Article and Find Full Text PDF

Several studies were focused on the application of MIL-100(Fe) (FeO(OH)(HO)(BTC), HBTC is 1,3,5-benzene tricarboxylic acid) in the photo-Fenton reaction, but it still suffers from low efficiency. In this work, MIL-100(Fe) was synthesized at ambient conditions and low pHs using Fe(II) precursors in homogeneous aqueous media to develop a sample with high activity in the photo-Fenton reaction, even better than Fe-porphyrin metal-organic frameworks. The as-synthesized sample is highly crystalline with 30.

View Article and Find Full Text PDF

A multifunctional nanoplatform integrating multiple therapeutic functions may be an effective strategy to realize satisfactory therapeutic efficacy in the treatment of tumors. However, there is still a certain challenge in integrating multiple therapeutic agents into a single formulation using a simple method due to variations in their properties. In this work, multifunctional CuS-ICG@PDA-FA nanoparticles (CIPF NPs) with excellent ability to produce reactive oxygen species and photothermal conversion performance are fabricated by a simple and gentle method.

View Article and Find Full Text PDF

TDP-43 transports ferritin heavy chain mRNA to regulate oxidative stress in neuronal axons.

Neurochem Int

January 2025

Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan; Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan. Electronic address:

Amyotrophic lateral sclerosis (ALS) is characterized by the mislocalization and abnormal deposition of TAR DNA-binding protein 43 (TDP-43). This protein plays important roles in RNA metabolism and transport in motor neurons and glial cells. In addition, abnormal iron accumulation and oxidative stress are observed in the brain and spinal cord of patients with ALS exhibiting TDP-43 pathology and in animal models of ALS.

View Article and Find Full Text PDF

Fenton-like reactions between organic peroxides and transition-metal ions in the atmospheric aqueous phase have profound impacts on the chemistry, composition, and health effects of aerosols. However, the kinetics, mechanisms, and key influencing factors of such reactions remain poorly understood. In this study, we synthesized a series of monoterpene-derived α-acyloxyalkyl hydroperoxides (AAHPs), an important class of organic peroxides formed from Criegee intermediates during the ozonolysis of alkenes, and investigated their Fenton-like reactions with iron ions in the aqueous phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!