The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic presented the most challenging global crisis in recent times. A pandemic caused by a novel pathogen such as SARS-CoV-2 necessitated the development of innovative techniques for the monitoring and surveillance of COVID-19 infections within communities. Wastewater surveillance (WWS) is recognized as a non-invasive, cost-effective, and valuable epidemiological tool to monitor the prevalence of COVID-19 infections in communities. Seven municipal wastewater sampling sites representing distinct sewershed communities were selected for the surveillance of the SARS-CoV-2 virus in Durham Region, Ontario, Canada over 8 months from March 2021 to October 2021. Viral RNA fragments of SARS-CoV-2 and the normalization target pepper mild mottle virus (PMMoV) were concentrated from wastewater influent using the PEG/NaCl superspeed centrifugation method and quantified using RT-qPCR. Strong significant correlations (Spearman's r = 0.749 to 0.862, P < 0.001) were observed between SARS-CoV-2 gene copies/mL of wastewater and clinical cases reported in each delineated sewershed by onset date. Although raw wastewater offered higher correlation coefficients with clinical cases by onset date compared to PMMoV normalized data, only one site had a statistically significantly higher Spearman's correlation coefficient value for raw data than normalized data. Implementation of community stay-at-home orders and vaccinations over the course of the study period in 2021 were found to strongly correspond to decreasing SARS-CoV-2 wastewater trends in the wastewater treatment plants and upstream pumping stations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173272DOI Listing

Publication Analysis

Top Keywords

covid-19 infections
8
infections communities
8
role catchment
4
catchment population
4
population size
4
size data
4
data normalization
4
normalization chronology
4
chronology public
4
public health
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!