Background: Celery root is known to cause severe allergic reactions in patients sensitized to mugwort pollen.

Objective: We studied clinically well-characterized patients with celery allergy by IgE testing with a comprehensive panel of celery allergens to disentangle the molecular basis of what is known as the celery-mugwort syndrome.

Methods: Patients with suspected food allergy to celery underwent a standardized interview. Main inclusion criteria were a positive food challenge with celery or an unambiguous case history of severe anaphylaxis. IgE to celery allergens (rApi g 1.01, rApi g 1.02, rApi g 2, rApi g 4, nApi g 5, rApi g 6, rApi g 7) and to mugwort allergens (rArt v 1, rArt v 3, rArt v 4) were determined. IgE levels ≥0.35 kU/L were regarded positive.

Results: Seventy-nine patients with allergy to celery were included. Thirty patients had mild oral or rhinoconjunctival symptoms, and 49 had systemic reactions. Sixty-eight percent had IgE to celery extract, 80% to birch pollen, and 77% to mugwort pollen. A combination of Api g 1.01, 1.02, 4, 5, and 7 increased the diagnostic sensitivity for celery allergy to 92%. The lipid transfer proteins Api g 2 and Api g 6 were not relevant in our celery-allergic population. IgE to Api g 7, detected in 52% of patients, correlated closely (r = 0.86) to Art v 1 from mugwort pollen. Eleven of 12 patients with monosensitization to Api g 7 were IgE negative to celery extract. The odds ratio for developing a severe anaphylactic reaction rather than only mild oral symptoms was about 6 times greater (odds ratio, 5.87; 95% confidence interval, 1.08-32.0; P = .0410) for Api g 7-sensitized versus -nonsensitized subjects.

Conclusion: There is an urgent need for routine diagnostic tests to assess sensitization to Api g 7, not only to increase test sensitivity but also to identify patients at risk of a severe allergic reaction to celery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2024.04.030DOI Listing

Publication Analysis

Top Keywords

celery
12
celery allergy
12
api
8
severe allergic
8
patients
8
celery allergens
8
allergy celery
8
ige celery
8
rapi rapi
8
rart rart
8

Similar Publications

3-N-Butylphthalide alleviate Aβ-induced cellular senescence through the CDK2-pRB1-Caspase3 axis.

Brain Res

December 2024

Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) and leading to cellular senescence and cognitive deficits. Cellular senescence contributes significantly to the pathogenesis of AD through the senescence-associated secretory phenotype (SASP), exacerbating Aβ deposition. This study investigates the protective effects of 3-N-Butylphthalide (NBP), a compound derived from Apium graveolens Linn (Chinese celery), on Aβ-induced cellular senescence in U87 cells.

View Article and Find Full Text PDF

The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.

View Article and Find Full Text PDF

Genome of root celery and population genomic analysis reveal the complex breeding history of celery.

Plant Biotechnol J

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.

Celery (Apium graveolens L.) is an important vegetable crop in the Apiaceae family. It comprises three botanical varieties: common celery with solid and succulent petioles, celeriac or root celery with enlarged and fleshy hypocotyls and smallage or leaf celery with slender, leafy and usually hollow petioles.

View Article and Find Full Text PDF

Investigating the antidiabetic properties of Apium graveolens extract and its inhibition of enzymes associated with hyperglycemia.

Int J Biol Macromol

December 2024

Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia. Electronic address:

Background: Apium graveolens Linn., also known as celery, is a member of the Apiaceae family and has shown promising pharmacological properties, including diabetes. Indeed, the current investigation aimed to investigate the potential inhibitory effects of A.

View Article and Find Full Text PDF

Selenium Biofortification of Vegetables Grown in Calcareous Soil: A Pot Experiment Using Se as a Tracer.

Biol Trace Elem Res

December 2024

Division of Agriculture and Environmental Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.

Dietary selenium (Se) is vital for human health and can be provided through consumption of Se-rich vegetables. Soil Se is often poorly available and so biofortification using Se-enriched fertilizers is used to enhance dietary intake. This study aimed to (a) evaluate the feasibility of biofortifying vegetables, commonly grown in the calcareous soils of Kurdistan, with a single application of Se (10 g ha) as selenate and, (b) trace the fate of applied Se using an enriched stable isotope, ⁷⁷Se.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!