Purpose: Midday fogging (MDF) occurs when particulate material accumulates in the fluid reservoir (FR) beneath scleral lenses (SL), and its impact on epithelial cells is unknown. This study examines the in vitro pro-inflammatory effect of the FR on human corneal epithelial cells in varying degrees of MDF.
Methods: Normal SL neophytes were recruited to wear SL 8 h daily for 4 days. Following 8 h on days 1 and 4, optical coherence tomography (OCT) images were acquired for MDF quantification using ImageJ, and the FR was collected. FR samples from the same eye were later pooled, diluted 2-fold and applied on human telomerase-immortalized corneal epithelial (hTCEpi) cells cultured on Terasaki microwell plates. Tumor necrosis factor (TNF)-α and culture media were used as positive and negative controls, respectively. After a 30-minute treatment, the nuclear factor-kappa B (NF-κB) pathway was measured by NF-κB-p65 immunofluorescence and images were analyzed with ImageJ. Pearson's correlation was conducted to determine the association between median nuclear fluorescence and MDF.
Results: Fourteen FR samples with a mean volume of 22 ± 16 µl were tested. Mean MDF severity following 8 h of SL wear was 25 ± 17 units (range 7 - 64). The median nuclear fluorescence (NF-κB-p65 translocation) in cultured hTCEpi cells ranged from 31.43 to 45.16 while the negative and positive controls were 44.71 ± 1.72 and 108.77 ± 68.38, respectively. Although a potential positive trend between MDF and median nuclear fluorescence was observed, Pearson's correlation analysis revealed no significant association (r = +0.48, P = 0.09).
Conclusions: The results suggest that the FR can trigger NF-κB-p65 translocation in hTCEpi cells, which may be associated with MDF severity. This study introduces the use of Terasaki microwell plates for immunofluorescence studies of the FR. The technique is simple, minimizes sample usage, and does not require expensive instrumentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clae.2024.102187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!