AI Article Synopsis

  • - This study explores how androgen receptor (AR)-targeting therapy leads to oxidative stress in prostate cancer, focusing on the underlying mechanisms of this stress induction.
  • - Researchers found that reactive oxygen species (ROS) generated due to AR inhibition are linked to peroxisomes and specifically involve the PPARA gene, which is activated during this process.
  • - Targeting PPARα, through gene silencing or small molecule inhibitors, enhances cancer cell sensitivity to antiandrogens like enzalutamide, suggesting a potential new therapeutic strategy in prostate cancer treatment.

Article Abstract

Androgen receptor (AR)-targeting therapy induces oxidative stress in prostate cancer. However, the mechanism of oxidative stress induction by AR-targeting therapy remains unclear. This study investigated the mechanism of oxidative stress induction by AR-targeting therapy, with the aim to develop novel therapeutics targeting oxidative stress induced by AR-targeting therapy. Intracellular reactive oxygen species (ROS) was examined by fluorescence microscopy and flow cytometry analysis. The effects of silencing gene expression and small molecule inhibitors on gene expression and cytotoxic effects were examined by quantitative real-time PCR and cell proliferation assay. ROS induced by androgen depletion co-localized with peroxisomes in prostate cancer cells. Among peroxisome-related genes, PPARA was commonly induced by AR inhibition and involved in ROS production via PKC signaling. Inhibition of PPARα by specific siRNA and a small molecule inhibitor suppressed cell proliferation and increased cellular sensitivity to the antiandrogen enzalutamide in prostate cancer cells. This study revealed a novel pathway by which AR inhibition induced intracellular ROS mainly in peroxisomes through PPARα activation in prostate cancer. This pathway is a promising target for the development of novel therapeutics for prostate cancer in combination with AR-targeting therapy such as antiandrogen enzalutamide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.05.030DOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
oxidative stress
20
ar-targeting therapy
20
induced androgen
8
androgen receptor
8
mechanism oxidative
8
stress induction
8
induction ar-targeting
8
novel therapeutics
8
gene expression
8

Similar Publications

Objectives: This research aimed to compare the prostate cancer (PCa) features, survival rate, and functional outcomes after open suprapubic Radical Prostatectomy (RP) between younger men (≤ 55 years) and older men (> 55 years).

Methods: In this retrospective cohort study, we studied 134 patients with clinically localized PCa who underwent RP at our centers between 2011 and 2019, with 26 (19.40%) patients aged ≤ 55.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.

View Article and Find Full Text PDF

Background: Prostate cancer was the fourth most diagnosed cancer worldwide in 2022. Radical treatments and androgen deprivation therapy benefit newly diagnosed patients but impact quality of life, often leading to castration-resistant prostate cancer. Short-term dietary changes significantly affect the gut microbiota, which differs markedly between prostate cancer patients and healthy individuals, impacting both cancer progression and treatment response.

View Article and Find Full Text PDF

Background: The natural killer (NK) activity of peripheral blood mononuclear cells (PBMCs) is a crucial defense against the onset and spread of cancer. Studies have shown that patients with reduced NK activity are more susceptible to cancer, and NK activity tends to decrease due to cancer-induced immune suppression. Enhancing the natural cytotoxicity of PBMCs remains a significant task in cancer research.

View Article and Find Full Text PDF

Effect of Propolis on PPP2R1A and Apoptosis in Cancer Cells.

Biochem Res Int

January 2025

Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye.

Recently, it has been shown that protein phosphatase 2A (PP2A) dysfunction was common in many cancer types and was mediated by various inactivation mechanisms. Although many research studies observed antitumor effect of propolis extracts in various types of cancer, the mechanism of effect are still obscure. In this study, we investigated the effect of propolis on PPP2R1A expression and its relationship with apoptosis in the SW-620 (colorectal cancer), DU-145 and PC-3 (prostate cancer), and MCF-7 (breast cancer) cell lines, with WI-38 (healthy fibroblast) cells serving as the control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!