The valproic acid model has been shown to reproduce ASD-like behaviours observed in patients and is now widely validated for construct, face, and predictivity as ASD model in rat. The literature agrees on using a single exposition to 500 mg/kg of VPA at gestational day 12 to induce ASD phenotype with the intraperitoneal route being the most commonly used. However, some studies validated this model with repeated exposure by using oral route. The way of administration may be of great importance in the induction of the ASD phenotype and a comparison is greatly required. We compared two ASD models, one induced by a unique IP injection of 500 mg/kg of body weight at GD12 and the other one by repeated PO administration of 500 mg/kg of body weight/day between GD11 and GD13. The behavioural phenotypes of the offspring were assessed for the core signs of ASD (impaired social behaviour, stereotypical/repetitive behaviours, sensory/communication deficits) as well as anxiety as comorbidity, at developmental and juvenile stages in both sexes. The VPA IP model induced a more literature-compliant ASD phenotype than the PO one. These results confirmed that the mode of administration as well as the window of VPA exposure are key factors in the ASD-induction phenotype. Interestingly, the effects of VPA administration were similar at the developmental stage between both sexes and then tended to differ later in life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2024.05.002 | DOI Listing |
Case Rep Genet
January 2025
Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, 2825 50th Street, Davis, Sacramento 95817, California, USA.
Fragile X syndrome (FXS) presents with autism spectrum disorder (ASD), intellectual disability, developmental delay, seizures, hypotonia during infancy, joint laxity, behavioral issues, and characteristic facial features. The predominant mechanism is due to CGG trinucleotide repeat expansion of more than 200 repeats in the 5'UTR (untranslated region) of (Fragile X Messenger Ribonucleoprotein 1) causing promoter methylation and transcriptional silencing. However, not all patients presenting with the characteristic phenotype and point/frameshift mutations with deletions in have been described in the literature.
View Article and Find Full Text PDFSpine (Phila Pa 1976)
January 2025
Department of Orthopedics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
Study Design: A retrospective review of a prospective adult spinal deformity data.
Objective: To identify distinct patient clinical profiles and recovery trajectories in patients with adult spinal deformity (ASD).
Summary Of Background Data: Patients with ASD exhibit a diverse array of symptoms and significant heterogeneity in clinical presentations, posing challenges to precise clinical decision-making.
Theranostics
January 2025
Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
Mutations in the synaptic protein MAM domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) have been associated with autism spectrum disorder (ASD). Therefore, elucidating the regulatory mechanisms of MDGA2 can help develop effective treatments for ASD. Liquid chromatography-tandem mass spectrometry was carried out to identify proteins interacting with the extracellular domain of RPS23RG1 and with MDGA2, followed by co-immunoprecipitation assays to confirm protein-protein interactions.
View Article and Find Full Text PDFFront Child Adolesc Psychiatry
November 2024
Department of Psychology, Palo Alto University, Palo Alto, CA, United States.
Introduction: Autism Spectrum Disorder (ASD) is characterized by deficits in social cognition, self-referential processing, and restricted repetitive behaviors. Despite the established clinical symptoms and neurofunctional alterations in ASD, definitive biomarkers for ASD features during neurodevelopment remain unknown. In this study, we aimed to explore if activation in brain regions of the default mode network (DMN), specifically the medial prefrontal cortex (MPC), posterior cingulate cortex (PCC), superior temporal sulcus (STS), inferior frontal gyrus (IFG), angular gyrus (AG), and the temporoparietal junction (TPJ), during resting-state functional magnetic resonance imaging (rs-fMRI) is associated with possible phenotypic features of autism (PPFA) in a large, diverse youth cohort.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!