Pest management technology has been a promising bioconversion method for waste resource utilization. Unlike many pests that consume waste, the larvae of Lucilia sericata, also known as maggots, have many outstanding advantages as following: with their strong adaption to environment and not easily infected and exhibiting a medicinal nutritional value. Herein, the potential efficacies of maggot polysaccharides (MP), as well as their underlying mechanisms, were explored in Dextran sulfate sodium (DSS)-induced colitis mice and TNF-α-elicited Caco-2 cells. We extracted two bioactive polysaccharides from maggots, MP-80 and MP-L, whose molecular weights were 4.25 × 10 and 2.28 × 10 g/mol, respectively. MP-80 and MP-L contained nine sugar residues: 1,4-α-Arap, 1,3-β-Galp, 1,4,6-β-Galp, 1,6-α-Glcp, 1-α-Glcp, 1,4-β-Glcp, 1-β-Xylp, 1,2-α-Manp, and 1-β-Manp. We demonstrated that MP-80 and MP-L significantly ameliorated DSS-induced symptoms and histopathological damage. Immuno-analysis revealed that compared with MP-L, MP-80 could better restore intestinal barrier and reduced inflammation by suppressing NLRP3/NF-κB pathways, which might be attributed to its enriched galactose fraction. Moreover, 16S rRNA sequencing revealed that MP-80 and MP-L both improved the dysbiosis and diversity of gut microbiota and acted on multiple microbial functions. Our study sheds new light on the possibility of using maggot polysaccharides as an alternative therapy for colitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!