A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MRI radiomics nomogram integrating postoperative adjuvant treatments in recurrence risk prediction for patients with early-stage cervical cancer. | LitMetric

Background And Purpose: Adjuvant treatments are valuable to decrease the recurrence rate and improve survival for early-stage cervical cancer patients (ESCC), Therefore, recurrence risk evaluation is critical for the choice of postoperative treatment. A magnetic resonance imaging (MRI) based radiomics nomogram integrating postoperative adjuvant treatments was constructed and validated externally to improve the recurrence risk prediction for ESCC.

Material And Methods: 212 ESCC patients underwent surgery and adjuvant treatments from three centers were enrolled and divided into the training, internal validation, and external validation cohorts. Their clinical data, pretreatment T2-weighted images (T2WI) were retrieved and analyzed. Radiomics models were constructed using machine learning methods with features extracted and screen from sagittal and axial T2WI. A nomogram for recurrence prediction was build and evaluated using multivariable logistic regression analysis integrating radiomic signature and adjuvant treatments.

Results: A total of 8 radiomic features were screened out of 1020 extracted features. The extreme gradient boosting (XGboost) model based on MRI radiomic features performed best in recurrence prediction with an area under curve (AUC) of 0.833, 0.822 in the internal and external validation cohorts, respectively. The nomogram integrating radiomic signature and clinical factors achieved an AUC of 0.806, 0.718 in the internal and external validation cohorts, respectively, for recurrence risk prediction for ESCC.

Conclusion: In this study, the nomogram integrating T2WI radiomic signature and clinical factors is valuable to predict the recurrence risk, thereby allowing timely planning for effective treatments for ESCC with high risk of recurrence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2024.110328DOI Listing

Publication Analysis

Top Keywords

recurrence risk
20
nomogram integrating
16
adjuvant treatments
16
risk prediction
12
external validation
12
validation cohorts
12
radiomic signature
12
recurrence
9
radiomics nomogram
8
integrating postoperative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!