Therapeutic deep eutectic solvents (THEDES) have been attracting increasing attention in the pharmaceutical literature as a promising enabling technology capable of improving physicochemical and biopharmaceutical properties for difficult-to-deliver drug compounds. The current literature has explored amide local anaesthetics and carboxylic acid nonsteroidal anti-inflammatories (NSAIDs) as commonly used THEDES formers for their active hydrogen-bonding functionality. However, little is known about what happens within the "deep eutectic" region where a range of binary compositions present simply as a liquid with no melting events detectable across experimentally achievable conditions. There is also very limited understanding of how parent compounds' physicochemical properties could impact upon the formation, interaction mechanism, and stability of the formed liquid systems, despite the significance of these information in dose adjustment, industrial handling, and scaling-up of these liquids. In the current work, we probed the "deep eutectic" phenomenon by investigating the formation and physicochemical behaviours of some chosen lidocaine-NSAID systems across a wide range of composition ratios. Our data revealed that successfully formed THEDES exhibited composition dependent T variations with strong positive deviations from predicted T values using the Gordon-Taylor theory, suggesting substantial interactions within the formed supramolecular structure. Interestingly, it was found that the parent compound's glass forming ability had a noticeable impact upon such profound interaction and hence could dictate the success of THEDES formation. It has also been confirmed that all successful systems were formed based on charge-assisted hydrogen bonding within their THEDES network, affirming the significant role of partial protonisation on achieving a profound melting point depression. More importantly, the work found that within the "deep eutectic" region there was still an ideal, or thermodynamically preferrable "THEDES point", which would exhibit excellent stability upon exposure to stress storage conditions. The discoveries of this study bring the literature one step closer to fully understanding the "therapeutic deep eutectic" phenomenon. Through correlation between parent reagents' physicochemical properties and the synthesised products' characteristics, we establish a more educated process for the prediction and engineering of THEDES.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2024.114329 | DOI Listing |
Anal Chim Acta
January 2025
Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China. Electronic address:
Background: Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address:
Background: Capillary electrophoresis (CE) is a highly versatile separation technique widely used in analytical chemistry. Traditionally, CE can be categorized as either aqueous or non-aqueous systems based on the buffer solvents employed. For decades, non-aqueous CE has been predominantly associated with the use of organic solvents, a perception deeply ingrained in the scientific community.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
Lignin, a biomass-derived material containing chromophores, possesses the potential to serve as a versatile organic ultraviolet (UV) light screening agent. By employing quantum chemical computation techniques, an amphoteric deep eutectic solvent (DES) based on sulfamic acid was purposefully designed and engineered to create a solvent system tailored for the nanoparticle formation and functionalization of lignin. As confirmed by experimental evidence, the size of the modified lignin nanoparticles (LNPs) varies from 168.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey. Electronic address:
This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel. Electronic address:
Cyclodextrins are widely used pharmaceutical excipients known to increase the solubility of drug compounds through formation of inclusion complexes. A prominent limitation of common cyclodextrins is their own scarce solubility in water, which renders them unsuitable for many drug formulations. Cyclodextrin solubility can be enhanced in appropriate media such as Deep Eutectic Solvents (DESs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!