Oxygen influences spatial heterogeneity and microbial succession dynamics during Baijiu stacking process.

Bioresour Technol

Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China. Electronic address:

Published: July 2024

The spontaneous solid-state stacking process (SSSP) of Baijiu is an environmentally friendly and cost-effective process for enriching and assembling environmental microorganisms to guarantee the subsequent fermentation efficiency. In this study, how SSSP create spatial heterogeneity of stacking piles were found through spatiotemporal sampling. The degree of difficulty in oxygen exchange categorizes the stacking pile into depleted (≤4%), transitional (4 %-17 %), and enriched (≥17 %) oxygen-defined layers. This results in variation in succession rates (V > V > V), which accelerates spatial heterogeneity during SSSP. As a dominant species (65 %-99 %) in depleted and transitional layers, Acetilactobacillus jinshanensis can rapidly reduce oxygen disturbance by upregulating poxL and catE, that sustains spatial heterogeneity. The findings demonstrated the value of oxygen control in shaping spatial heterogeneity during SSSP processes, which can create specific functional microbiome. Adding spatial heterogeneity management will help achieve more precise control of such solid-state fermentation systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130854DOI Listing

Publication Analysis

Top Keywords

spatial heterogeneity
24
stacking process
8
heterogeneity sssp
8
spatial
6
heterogeneity
6
oxygen
4
oxygen influences
4
influences spatial
4
heterogeneity microbial
4
microbial succession
4

Similar Publications

Current state and future prospects of spatial biology in colorectal cancer.

Front Oncol

December 2024

Department of Integrative Translational Sciences, City of Hope, Beckman Research Institute, Duarte, CA, United States.

Over the past century, colorectal cancer (CRC) has become one of the most devastating cancers impacting the human population. To gain a deeper understanding of the molecular mechanisms driving this solid tumor, researchers have increasingly turned their attention to the tumor microenvironment (TME). Spatial transcriptomics and proteomics have emerged as a particularly powerful technology for deciphering the complexity of CRC tumors, given that the TME and its spatial organization are critical determinants of disease progression and treatment response.

View Article and Find Full Text PDF

Traditional deep fluorescence imaging has primarily focused on red-shifting imaging wavelengths into the near-infrared (NIR) windows or implementation of multi-photon excitation approaches. Here, we combine the advantages of NIR and multiphoton imaging by developing a dual-infrared two-photon microscope to enable high-resolution deep imaging in biological tissues. We first computationally identify that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation.

View Article and Find Full Text PDF

Spatially mapping the transcriptome and proteome in the same tissue section can significantly advance our understanding of heterogeneous cellular processes and connect cell type to function. Here, we present Deterministic Barcoding in Tissue sequencing plus (DBiTplus), an integrative multi-modality spatial omics approach that combines sequencing-based spatial transcriptomics and image-based spatial protein profiling on the same tissue section to enable both single-cell resolution cell typing and genome-scale interrogation of biological pathways. DBiTplus begins with reverse transcription for cDNA synthesis, microfluidic delivery of DNA oligos for spatial barcoding, retrieval of barcoded cDNA using RNaseH, an enzyme that selectively degrades RNA in an RNA-DNA hybrid, preserving the intact tissue section for high-plex protein imaging with CODEX.

View Article and Find Full Text PDF

Limitations in solar energy conversion by photocatalysis typically stem from poor underlying charge carrier properties. Transient Absorption (TA) reveals insights on key photocatalytic properties such as charge carrier lifetimes and trapping. However, on the microsecond timescale, these measurements use relatively large probe sizes ranging in millimetres to centimetres which averages the effect of spatial heterogeneity at smaller length scales.

View Article and Find Full Text PDF

Subterranean estuaries (STEs) are critical ecosystems at the interface of meteoric groundwater and subsurface seawater that are threatened by sea level rise. To characterize the influence of tides and waves on the STE microbial community, we collected porewater samples from a high-energy beach STE at Stinson Beach, California, USA, over the two-week neap-spring tidal transition during both a wet and dry season. The microbial community, analyzed by 16S rRNA gene (V4) amplicon sequencing, clustered according to consistent physicochemical features found within STEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!