The NF1 gene is related to neurofibromatosis type 1 (NF1), which is an autosomal dominant disorder associated with multisystem involvement and epilepsy susceptibility. A human induced pluripotent stem cell (iPSC) line was derived from a pediatric patient with NF1 and epilepsy, harboring a heterozygous NF1 gene mutation. The iPSC line exhibits high levels of pluripotency markers, maintains the NF1 gene mutation, and demonstrates the capacity to undergo differentiation potential in vitro into three germ layers. The iPSC line will serve as a valuable resource for investigating the underlying mechanisms and conducting drug screening related to NF1 and NF1-associated epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2024.103444DOI Listing

Publication Analysis

Top Keywords

nf1 gene
16
neurofibromatosis type
8
epilepsy harboring
8
harboring heterozygous
8
gene mutation
8
nf1
7
generation human
4
ipsc
4
human ipsc
4
ipsc cipi004-a
4

Similar Publications

Neurofibromatosis type 1 (NF1) is a complex neurocutaneous disorder caused by pathogenic variants in the gene. Although genotype-phenotype correlation studies are increasing, robust clinically relevant correlations have remained limited. We conducted a retrospective analysis of data obtained from a cohort of 204 Hungarian individuals, with a mean age of 16 years (age range: 1-33 years).

View Article and Find Full Text PDF

WDR26 depletion alters chromatin accessibility and gene expression profiles in mammalian cells.

Genomics

January 2025

Robarts Research Institute, University of Western Ontario, London, Canada; Department of Biochemistry, University of Western Ontario, London, Canada; Department of Oncology, University of Western Ontario, London, Canada. Electronic address:

WD-repeat containing protein 26 (WDR26) is an essential component of the CTLH E3 ligase complex. Mutations in WDR26 lead to Skraban-Deardorff, an intellectual disability syndrome with clinical features resembling other disorders arising from defects in transcriptional regulation and chromatin structure. However, the role of WDR26 and its associated CTLH complex in regulating chromatin or transcription has not been elucidated.

View Article and Find Full Text PDF

Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).

View Article and Find Full Text PDF

Background: Neurofibromatosis type 1 (NF-1), a rare autosomal dominant disorder, arises from gene mutations affecting neurofibromin, a Ras GTPase regulator. These mutations activate Ras proteins, triggering clinical symptoms such as skin spots, epilepsy, pain, and tumors. Although gastrointestinal stromal tumors are well-known in NF-1, diffuse intestinal ganglioneuromatosis remains an extremely rare complication.

View Article and Find Full Text PDF

Clonal haematopoiesis of indeterminate potential and risk of microvascular complications among individuals with type 2 diabetes: a cohort study.

Diabetes

January 2025

Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Clonal haematopoiesis of indeterminate potential (CHIP) is associated with macrovascular diseases, including coronary artery disease and stroke. However, the effects of CHIP on microvascular complication have not been evaluated in individuals with type 2 diabetes (T2D). This study included 20,712 T2D participants without prevalent diabetic microvascular complication (DMCs) and hematologic malignancy at baseline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!