A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fermentation broth from fruit and vegetable waste works: Reducing the risk of human bacterial pathogens in soil by inhibiting quorum sensing. | LitMetric

Fermentation broth from fruit and vegetable waste works: Reducing the risk of human bacterial pathogens in soil by inhibiting quorum sensing.

Environ Int

Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

Published: June 2024

AI Article Synopsis

  • Fermentation broth from fruit and vegetable waste (FFVW) effectively reduces antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) associated with human health.
  • Metagenomic analysis indicated significant reductions in harmful bacteria like Klebsiella pneumoniae and Mycobacterium tuberculosis due to FFVW treatment.
  • The mechanism involves the inhibition of quorum sensing (QS) in bacteria, leading to decreased expression of genes related to virulence factors (VFGs) and ARGs, promoting a safer environment for soil and human health.

Article Abstract

Fermentation broth from fruit and vegetable waste (FFVW) has demonstrated remarkable ability as a soil amendment and in reducing antibiotic resistance genes (ARGs) pollution. However, the potential of FFVW to mitigate other microbial contamination such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), which are closely associated with human health, remains unknown. In this study, metagenomic analysis revealed that FFVW reduced the HBPs with high-risk of ARGs and VFGs including Klebsiella pneumoniae (reduced by 40.4 %), Mycobacterium tuberculosis (reduced by 21.4 %) and Streptococcus pneumoniae (reduced by 38.7 %). Correspondingly, VFG abundance in soil decreased from 3.40 copies/cell to 2.99 copies/cell. Further analysis illustrated that these was mainly attributed to the inhibition of quorum sensing (QS). FFVW reduced the abundance of QS signals, QS synthesis genes such as rpaI and luxS, as well as receptor genes such as rpfC and fusK, resulting in a decreased in risk of ARGs and VFGs. The pure culture experiment revealed that the expression of genes related to QS, VFGs, ARGs and mobile genetic elements (MGEs) were downregulated in Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and K. pneumoniae treated by FFVW, consistent with the result of metagenomic analysis. This study suggested an environmentally friendly approach for controlling soil VFGs/ARGs-carrying HBPs, which is crucial for both soil and human health under the framework of "One Health".

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.108753DOI Listing

Publication Analysis

Top Keywords

fermentation broth
8
broth fruit
8
fruit vegetable
8
vegetable waste
8
human bacterial
8
bacterial pathogens
8
quorum sensing
8
genes vfgs
8
human health
8
metagenomic analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!