In this study, biodegradable active films were prepared from potato starch and polyvinyl alcohol at different proportions, mixed with acetone extract of Hibiscus sabdariffa L. (HS) and using glycerol as a plasticizer. Functional properties, antimicrobial, and antioxidant capacity were evaluated. Potato starch films with a proportion of polyvinyl alcohol up to 50% and HS extract had significant antioxidant capacity and antibacterial effect against most of the analyzed strains. Adding polyvinyl alcohol (PVOH) and HS extract improved the mechanical performance and reduced water vapor permeability of the materials. The active biobased films with HS extract presented good physicochemical, antimicrobial, and antioxidant properties. These materials are considered as suitable for food packaging, and the active compounds in the roselle extract are a natural antibacterial option for the food area. The materials based entirely on biodegradable products are an excellent alternative when developing and marketing biobased materials, minimizing the environmental impact of food packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11130-024-01189-4 | DOI Listing |
Int J Biol Macromol
December 2024
School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China. Electronic address:
In this study, physicochemical and structural properties of gelatin-zein blending films and bilayer films prepared through blending and layer-by-layer self-assembly method under TGase crosslinking were systematically compared. The ratios of gelatin to zein examined were 2:1, 1:1, and 1:2. Results showed that the tensile strength of both blending films and bilayer films was the highest when the ratio of gelatin to zein was 2:1, which was 4.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:
Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China. Electronic address:
Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties.
View Article and Find Full Text PDFGels
November 2024
Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile.
Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base).
View Article and Find Full Text PDFGels
November 2024
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!