Antimicrobial resistance comes with high morbidity and mortality burden, and ultimately high impact on healthcare and social costs. Efficient strategies are needed to limit antibiotic overuse. This paper investigates the cost-effectiveness of testing patients with lower respiratory tract infection with procalcitonin, either at the point-of-care only or combined with lung ultrasonography. These diagnostic tools help detect the presence of bacterial pneumonia, guiding prescription decisions. The clinical responses of these strategies were studied in the primary care setting. Evidence is needed on their cost-effectiveness. We used data from a cluster-randomized bi-centric clinical trial conducted in Switzerland and estimated patient-level costs using data on resource use to which we applied Swiss tariffs. Combining the incremental costs of the two strategies and the reduction in the 28-days antibiotic prescription rate (APR) compared to usual care, we calculated Incremental Cost-Effectiveness Ratios (ICER). We also used the Cost-Effectiveness Acceptability Curve as an analytical decision-making tool. The robustness of the findings is ensured by Probabilistic Sensitivity Analysis and scenario analysis. In the base case scenario, the ICER compared to usual care is $2.3 per percentage point (pp) reduction in APR for the procalcitonin group, and $4.4 for procalcitonin-ultrasound combined. Furthermore, we found that for a willingness to pay per patient of more than $2 per pp reduction in the APR, procalcitonin is the strategy with the highest probability to be cost-effective. Our findings suggest that testing patients with respiratory symptoms with procalcitonin to guide antibiotic prescription in the primary care setting represents good value for money.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10198-024-01694-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!