Glioblastoma (GBM) is a primary malignant brain tumor with limited therapeutic options. One promising approach is local drug delivery, but the efficacy is hindered by limited diffusion and retention. To address this, we synthesized and developed a dual-sensitive nanoparticle (Dual-NP) system, formed between a dendrimer and dextran NPs, bound by a dual-sensitive [matrix metalloproteinase (MMP) and pH] linker designed to disassemble rapidly in the tumor microenvironment. The disassembly prompts the in situ formation of nanogels via a Schiff base reaction, prolonging Dual-NP retention and releasing small doxorubicin (Dox)-conjugated dendrimer NPs over time. The Dual-NPs were able to penetrate deep into 3D spheroid models and detected at the tumor site up to 6 days after a single intratumoral injection in an orthotopic mouse model of GBM. The prolonged presence of Dual-NPs in the tumor tissue resulted in a significant delay in tumor growth and an overall increase in survival compared to untreated or Dox-conjugated dendrimer NPs alone. This Dual-NP system has the potential to deliver a range of therapeutics for efficiently treating GBM and other solid tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c03409DOI Listing

Publication Analysis

Top Keywords

dual-np system
8
dox-conjugated dendrimer
8
dendrimer nps
8
tumor
5
matrix metalloproteinase-
4
metalloproteinase- ph-sensitive
4
ph-sensitive nanoparticle
4
nanoparticle system
4
system enhances
4
enhances drug
4

Similar Publications

Glioblastoma (GBM) is a primary malignant brain tumor with limited therapeutic options. One promising approach is local drug delivery, but the efficacy is hindered by limited diffusion and retention. To address this, we synthesized and developed a dual-sensitive nanoparticle (Dual-NP) system, formed between a dendrimer and dextran NPs, bound by a dual-sensitive [matrix metalloproteinase (MMP) and pH] linker designed to disassemble rapidly in the tumor microenvironment.

View Article and Find Full Text PDF

Predicting the ability of nanoparticles (NP) to access the tumor is key to the success of chemotherapy using nanotherapeutics. In the present study, the ability of the dual NP-based theranostic system to accumulate in the tumor was evaluated in vivo using intravital microscopy (IVM) and MRI. The system consisted of model therapeutic doxorubicin-loaded poly(lactide-co-glycolide) NP (Dox-PLGA NP) and novel hybrid Ce-doped maghemite NP encapsulated within the HSA matrix (hMNP) as a supermagnetic MRI contrasting agent.

View Article and Find Full Text PDF

Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo.

J Control Release

December 2015

Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea. Electronic address:

Cancer is a multifactorial disease which involves complex genetic mutation and dysregulation. Combinatorial RNAi technology and concurrent multiple gene silencing are expected to provide advanced strategies for effective cancer therapy, but a safe and effective carrier system is a prerequisite to successful siRNA delivery in vivo. We previously developed an effective tumor-targeting siRNA delivery system for in vivo application.

View Article and Find Full Text PDF

Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) upregulation are genetic markers for the chronic hypertrophic phenotype but also have important acute physiologic effects on salt and water balance and blood pressure control. The presence of a dual NP-system led us to hypothesize a differential expression of ANP and BNP in response to an acute hemodynamic stress of volume overload in the left ventricle (LV) and right ventricle (RV). Accordingly, we examined the temporal relationship between the RV and LV expression of ANP and BNP mRNA and NP receptor mRNA levels on days 1, 2, 3, and 7 after induction of aortocaval fistula in the rat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!