Cardiomyocyte (CM) proliferation and maturation are highly linked processes, however, the extent to which these processes are controlled by a single signaling axis is unclear. Here, we show the previously undescribed role of Hedgehog (HH)-GLI2-CKS1B cascade in regulation of the toggle between CM proliferation and maturation. Here we show downregulation of GLI-signaling in adult human CM, adult murine CM, and in late-stage hiPSC-CM leading to their maturation. In early-stage hiPSC-CM, inhibition of HH- or GLI-proteins enhanced CM maturation with increased maturation indices, increased calcium handling, and transcriptome. Mechanistically, we identified CKS1B, as a new effector of GLI2 in CMs. GLI2 binds the CKS1B promoter to regulate its expression. CKS1B overexpression in late-stage hiPSC-CMs led to increased proliferation with loss of maturation in CMs. Next, analysis of datasets of patients with heart disease showed a significant enrichment of GLI2-signaling in patients with ischemic heart failure (HF) or dilated-cardiomyopathy (DCM) disease, indicating operational GLI2-signaling in the stressed heart. Thus, the Hh-GLI2-CKS1B axis regulates the proliferation-maturation transition and provides targets to enhance cardiac tissue engineering and regenerative therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227970 | PMC |
http://dx.doi.org/10.1093/stcltm/szae032 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China.
As one of the most promising means to repair diseased tissues, stem cell therapy with immense potential to differentiate into mature specialized cells has been rapidly developed. However, the clinical application of stem-cell-dominated regenerative medicine was heavily hindered by the loss of pluripotency during the long-term in vitro expansion. Here, a composite three-dimensional (3D) graphene-based biomaterial, denoted as GO-Por-CMP@CaP, with hierarchical pore structure (micro- to macropore), was developed to guide the directional differentiation of human umbilical cord MSCs (hucMSCs) into osteoblasts.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan. Electronic address:
Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs).
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.
The combination of hydrophilic arginine residues and hydrophobic tryptophan residues is considered to be the first choice for designing short-chain antimicrobial peptides (AMPs) due to their potent antibacterial activity. Based on this, we designed an arginine- and tryptophan-rich short peptide, VR-12. Peri-implantitis is a significant microbial inflammatory disorder characterized by the inflammation of the soft tissues surrounding an implant, which ultimately leads to the progressive resorption of the alveolar bone.
View Article and Find Full Text PDFFEBS J
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
Intracellular calcium (Ca) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca levels during mouse erythroid development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!