Multi-component copolymerized donors (MCDs) have gained significant interest and have been rapidly developed in flexible organic solar cells (f-OSCs) in recent years. However, ensuring the power conversion efficiency (PCE) of f-OSCs while retaining ideal mechanical properties remains an enormous challenge. The fracture strain (FS) value of typical high-efficiency blend films is generally less than 8 %, which is far from the application standards of wearable photovoltaic devices. Therefore, we developed a series of novel MCDs after meticulous molecular design. Among them, the consistent MCD backbone and end-capped functional group formed a highly conjugated molecular plane, and the solubilization and mechanical properties were effectively optimized by modifying the proportion of solubilized alkyl chains. Consequently, due to the formation of entangled structures with a frozen blend film morphology considerably improved the high ductility of the active layer, P1/P2-TCl exhibited efficient PCE in rigid (18.53 %) and flexible (17.03 %) OSCs, along with excellent FS values (16.59 %) in pristine films, meanwhile, the outstanding FS values of 25.18 % and 12.3 % were achieved by P1/P2-TCl -based pristine and blend films, respectively, which were one of the highest records achieved by end-capped MCD-based binary OSCs, demonstrating promising application to synchronize the realization of high-efficiency and mechanically ductile flexible OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202407040 | DOI Listing |
Angew Chem Int Ed Engl
November 2024
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Multi-component copolymerized donors (MCDs) hold great promise for improving both the efficiency and mechanical robustness of flexible organic solar cells (f-OSCs) owing to their facile molecular tunability and advantageous one-pot copolymerization. However, despite the excellent crystallinity imparted by their highly conjugated polymer backbone, MCDs often struggle to retain photovoltaic performance under large external deformations, limiting their applicability in wearable devices. Herein, we developed a novel series of flexible linker-sequential block MCDs (Fs-MCDs), specifically PM6-Cl-b-D18-Cl-BTB, PM6-Cl-b-D18-Cl-BTH, and PM6-Cl-b-D18-Cl-BTD, by precisely incorporating flexible functional groups into the conjugated polymer skeleton.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
Angew Chem Int Ed Engl
July 2024
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Multi-component copolymerized donors (MCDs) have gained significant interest and have been rapidly developed in flexible organic solar cells (f-OSCs) in recent years. However, ensuring the power conversion efficiency (PCE) of f-OSCs while retaining ideal mechanical properties remains an enormous challenge. The fracture strain (FS) value of typical high-efficiency blend films is generally less than 8 %, which is far from the application standards of wearable photovoltaic devices.
View Article and Find Full Text PDFRSC Adv
February 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 700000 Vietnam
The demand for a wide array of functional chemicals and materials has experienced a significant surge in tandem with the advancement of civilization. Regrettably, a number of perilous solvents are employed in chemical laboratories and industrial settings, posing significant risks to the well-being of researchers and contributing to environmental degradation through pollution. Eutectogels, which are based on the eutectic concept, may be synthesized by self-assembling or self-polymerization of various components when put under UV irradiation (254 nm).
View Article and Find Full Text PDFMaterials (Basel)
September 2022
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
Wholly aromatic polyimide (PI) films with good solution processability, light colors, good optical transparency, high storage modulus, and improved heat resistance were prepared and characterized. For this purpose, a multi-component copolymerization methodology was performed from a fluoro-containing dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), a rigid dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and a fluoro-containing diamine, 2,2'-bis(trifluoromethyl)-4,4'-bis [4-(4-amino-3-methyl)benzamide]biphenyl (MABTFMB). One homopolymer, FPI-1 (6FDA-MABTFMB), and five copolymers, FPI-2~FPI-6, containing the BPDA units from 10 mol% to 50 mol% in the dianhydride moieties, were prepared, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!