Background: Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4 effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment.
Methods: The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model.
Results: We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8 T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8 T cells in mice with tumor lung metastasis and induces peripheral CD8 T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1β and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1β signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models.
Conclusions: Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100251 | PMC |
http://dx.doi.org/10.1186/s40164-024-00520-8 | DOI Listing |
J Immunother Cancer
January 2025
Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
Background: Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Moderna, Inc, Cambridge, Massachusetts, USA.
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response.
View Article and Find Full Text PDFHear Res
December 2024
Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia. Electronic address:
In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.
View Article and Find Full Text PDFMol Biomed
January 2025
Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States.
Ever since the US Food and Drug Administration (FDA) approved the first vascular endothelial growth factor (VEGF) antagonist 2 decades ago, inhibitors of VEGF have revolutionized the treatment of a variety of ocular disorders involving pathologic neovascularization and retinal exudation. In this perspective, we evaluate the current status of anti-VEGF therapies and the real-world challenges encountered with maintaining therapeutic outcomes. Finally, we describe novel VEGF-based and combinatorial approaches that are in clinical development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!