Background: Dark pigmented snow and glacier ice algae on glaciers and ice sheets contribute to accelerating melt. The biological controls on these algae, particularly the role of viruses, remain poorly understood. Giant viruses, classified under the nucleocytoplasmic large DNA viruses (NCLDV) supergroup (phylum Nucleocytoviricota), are diverse and globally distributed. NCLDVs are known to infect eukaryotic cells in marine and freshwater environments, providing a biological control on the algal population in these ecosystems. However, there is very limited information on the diversity and ecosystem function of NCLDVs in terrestrial icy habitats.
Results: In this study, we investigate for the first time giant viruses and their host connections on ice and snow habitats, such as cryoconite, dark ice, ice core, red and green snow, and genomic assemblies of five cultivated Chlorophyta snow algae. Giant virus marker genes were present in almost all samples; the highest abundances were recovered from red snow and the snow algae genomic assemblies, followed by green snow and dark ice. The variety of active algae and protists in these GrIS habitats containing NCLDV marker genes suggests that infection can occur on a range of eukaryotic hosts. Metagenomic data from red and green snow contained evidence of giant virus metagenome-assembled genomes from the orders Imitervirales, Asfuvirales, and Algavirales.
Conclusion: Our study highlights NCLDV family signatures in snow and ice samples from the Greenland ice sheet. Giant virus metagenome-assembled genomes (GVMAGs) were found in red snow samples, and related NCLDV marker genes were identified for the first time in snow algal culture genomic assemblies; implying a relationship between the NCLDVs and snow algae. Metatranscriptomic viral genes also aligned with metagenomic sequences, suggesting that NCLDVs are an active component of the microbial community and are potential "top-down" controls of the eukaryotic algal and protistan members. This study reveals the unprecedented presence of a diverse community of NCLDVs in a variety of glacial habitats dominated by algae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100222 | PMC |
http://dx.doi.org/10.1186/s40168-024-01796-y | DOI Listing |
Alzheimers Dement
December 2024
University of Manitoba, Winnipeg, MB, Canada.
Background: Mitochondrial bioenergetics are essential for cellular function, specifically the intricacies of the electron transport chain (ETC), with Complex IV playing a crucial role in unraveling the mechanisms governing energy production. Mathematical models offer a valuable approach to simulate these complex processes, providing insights into normal mitochondrial function and aberrations associated with various diseases, including neurodegenerative disorders. Our research focuses on introducing and refining a mathematical model, emphasizing Complex IV in the ETC, with objectives including incorporating mitochondrial activity modulation using inhibiting and uncoupling reagents, akin to oxygen consumption experiments.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, No.5088 Xincheng Road, Changchun, 130118, Jilin Province, China.
NH is the most important alkaline gas in the atmosphere and functions as a precursor to secondary ammonium salts. Therefore, identifying its sources and quantifying its emissions is imperative. NH represents a principal component of atmospheric particulate pollutants.
View Article and Find Full Text PDFNat Commun
January 2025
Climate and Ecosystem Sciences Division, Berkeley Lab, Berkeley, CA, USA.
Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States.
Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!