Numerous metagenomics studies, conducted in both full-scale anaerobic digesters and household biogas plants, have shed light on the composition and activity of microbial flora essential for optimizing the performance of biogas reactors, underscoring the significance of microbial community composition in biogas plant efficiency. Although the efficiency of household biogas plants in the sub-Himalayan region has been reported, there is no literature evidence on the microbial community structure of such household biogas plants in the sub-Himalayan region. The current study evaluated the physico-chemical properties and bacterial community structure from the slurry samples of household biogas plants prevalent in the sub-Himalayan region. The slurry samples were observed to be rich in nutrients; however, their carbon and nitrogen contents were higher than the recommended standard values of liquid-fermented organic manure. The species richness and diversity indices (Chao1, Shannon, and Simpson) of household biogas plants were quite similar to the advanced biogas reactors operating at mesophilic conditions. 16S rRNA gene amplicon sequencing reveals microbial diversity, showing a higher abundance of Firmicutes (70.9%) and Euryarchaeota (9.52%) in advanced biogas reactors compared to household biogas plants. Microbial analysis shows a lack of beneficial microbes for anaerobic digestion, which might be the reason for inefficient biogas production in household biogas plants of the sub-Himalayan region. The lack of efficient bacterial biomass may also be attributed to the digester design, feedstock, and ambient temperatures. This study emphasized the establishment of efficient microbial consortia for enhanced degradation rates that may increase the methane yield in biogas plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10123-024-00530-wDOI Listing

Publication Analysis

Top Keywords

biogas plants
36
household biogas
32
biogas
16
sub-himalayan region
16
microbial community
12
community structure
12
biogas reactors
12
plants sub-himalayan
12
plants
9
physico-chemical properties
8

Similar Publications

Exploring the catalytic hydrothermal liquefaction of Namibian encroacher bush.

Sci Rep

January 2025

Process and Energy Department, University of Technology of Delft, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.

An urgent ecological issue is the threat posed by invasive species, which are becoming more widespread especially in Africa. These encroachments damage ecosystems, pose a threat to biodiversity, and outcompete local plants and animals. This article focuses on converting Acacia Mellifera from Namibia, commonly known as encroacher bush (EB) into high-quality drop-in intermediates for the chemical and transport industry via hydrothermal liquefaction (HTL).

View Article and Find Full Text PDF

The rapid advancement in the field of omics approaches plays a crucial role in the development of improved industrial oil crops. Industrial oil crops play a crucial role across sectors like food processing, biofuels, cosmetics, and pharmaceuticals, making them indispensable contributors to global economies and these crops serve as vital elements in a multitude of industrial processes. Significant improvements in genomics have revolutionized the agricultural sector, particularly in the realm of oil crops.

View Article and Find Full Text PDF

Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.

View Article and Find Full Text PDF

Natural pigments and biogas recovery from cyanobacteria grown in treated wastewater. Fate of organic microcontaminants.

Water Res

December 2024

GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:

Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.

View Article and Find Full Text PDF

Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion.

Adv Biochem Eng Biotechnol

December 2024

Plant Ecology and Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.

The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!