Multi-criteria decision-making (MCDM) presents a significant challenge in decision-making processes, aiming to ascertain optimal choice by considering multiple criteria. This paper proposes rank order centroid (ROC) method, MCDM technique, to determine weights for sub-objective functions, specifically, addressing issue of automatic generation control (AGC) within two area interconnected power system (TAIPS). The sub-objective functions include integral time absolute errors (ITAE) for frequency deviations and control errors in both areas, along with ITAE of fluctuation in tie-line power. These are integrated into an overall objective function, with ROC method systematically assigning weights to each sub-objective. Subsequently, a PID controller is designed based on this objective function. To further optimize objective function, Jaya optimization algorithm (JOA) is implemented, alongside other optimization algorithms such as teacher-learner based optimization algorithm (TLBOA), Luus-Jaakola algorithm (LJA), Nelder-Mead simplex algorithm (NMSA), elephant herding optimization algorithm (EHOA), and differential evolution algorithm (DEA). Six distinct case analyses are conducted to evaluate controller's performance under various load conditions, plotting data to illustrate responses to frequency and tie-line exchange fluctuations. Additionally, statistical analysis is performed to provide further insights into efficacy of JOA-based PID controller. Furthermore, to prove the efficacy of JOA-based proposed controller through non-parametric test, Friedman rank test is utilized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101491PMC
http://dx.doi.org/10.1038/s41598-024-61945-zDOI Listing

Publication Analysis

Top Keywords

objective function
12
optimization algorithm
12
rank order
8
order centroid
8
generation control
8
roc method
8
weights sub-objective
8
sub-objective functions
8
pid controller
8
efficacy joa-based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!