Geometric deep learning methods and applications in 3D structure-based drug design.

Drug Discov Today

Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia 30107, Spain. Electronic address:

Published: July 2024

3D structure-based drug design (SBDD) is considered a challenging and rational way for innovative drug discovery. Geometric deep learning is a promising approach that solves the accurate model training of 3D SBDD through building neural network models to learn non-Euclidean data, such as 3D molecular graphs and manifold data. Here, we summarize geometric deep learning methods and applications that contain 3D molecular representations, equivariant graph neural networks (EGNNs), and six generative model methods [diffusion model, flow-based model, generative adversarial networks (GANs), variational autoencoder (VAE), autoregressive models, and energy-based models]. Our review provides insights into geometric deep learning methods and advanced applications of 3D SBDD that will be of relevance for the drug discovery community.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2024.104024DOI Listing

Publication Analysis

Top Keywords

geometric deep
16
deep learning
16
learning methods
12
methods applications
8
structure-based drug
8
drug design
8
drug discovery
8
geometric
4
learning
4
methods
4

Similar Publications

A reward shaping deep deterministic policy gradient (RS-DDPG) and simultaneous localization and mapping (SLAM) path tracking algorithm is proposed to address the issues of low accuracy and poor robustness of target path tracking for robotic control during maneuver. RS-DDPG algorithm is based on deep reinforcement learning (DRL) and designs a reward function to optimize the parameters of DDPG to achieve the required tracking accuracy and stability. A visual SLAM algorithm based on semantic segmentation and geometric information is proposed to address the issues of poor robustness and susceptibility to interference from dynamic objects in dynamic scenes for SLAM based on visual sensors.

View Article and Find Full Text PDF

Powerful generative AI models of protein-ligand structure have recently been proposed, but few of these methods support both flexible protein-ligand docking and affinity estimation. Of those that do, none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts. In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an arbitrary number of binding ligands.

View Article and Find Full Text PDF

In agriculture, promptly and accurately identifying leaf diseases is crucial for sustainable crop production. To address this requirement, this research introduces a hybrid deep learning model that combines the visual geometric group version 19 (VGG19) architecture features with the transformer encoder blocks. This fusion enables the accurate and précised real-time classification of leaf diseases affecting grape, bell pepper, and tomato plants.

View Article and Find Full Text PDF

This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.

View Article and Find Full Text PDF

With the increasing global attention to deep learning and the advancements made in applying convolutional neural networks in electromagnetics, we have recently witnessed the utilization of deep learning-based networks for predicting the spectrum and electromagnetic properties of structures instead of traditional tools like fully numerical-based methods. In this study, a Convolutional Neural Network (CNN is proposed for predicting spoof surface plasmon polaritons, enabling the examination of the absorption spectrum of metallic multilevel-grating structures (MMGS) and designing various sensor devices and absorbers in the shortest time possible. To expedite the training process of this network, a semi-analytical method of rigorous coupled-wave analysis (RCWA) enhanced with the fast Fourier factorization (FFF) technique has been employed, significantly reducing the data generation time for training.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!