Distinct feedforward and feedback pathways for cell-type specific attention effects.

Neuron

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands. Electronic address:

Published: July 2024

Selective attention is thought to depend on enhanced firing activity in extrastriate areas. Theories suggest that this enhancement depends on selective inter-areal communication via gamma (30-80 Hz) phase-locking. To test this, we simultaneously recorded from different cell types and cortical layers of macaque V1 and V4. We find that while V1-V4 gamma phase-locking between local field potentials increases with attention, the V1 gamma rhythm does not engage V4 excitatory-neurons, but only fast-spiking interneurons in L4 of V4. By contrast, attention enhances V4 spike-rates in both excitatory and inhibitory cells, most strongly in L2/3. The rate increase in L2/3 of V4 precedes V1 in time. These findings suggest enhanced signal transmission with attention does not depend on inter-areal gamma phase-locking and show that the endogenous gamma rhythm has cell-type- and layer-specific effects on downstream target areas. Similar findings were made in the mouse visual system, based on opto-tagging of identified interneurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616856PMC
http://dx.doi.org/10.1016/j.neuron.2024.04.020DOI Listing

Publication Analysis

Top Keywords

gamma phase-locking
8
gamma rhythm
8
attention
5
gamma
5
distinct feedforward
4
feedforward feedback
4
feedback pathways
4
pathways cell-type
4
cell-type specific
4
specific attention
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!