Construction of sub micro-nano-structured silicon based anode for lithium-ion batteries.

Nanotechnology

School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.

Published: June 2024

The significant volume change experienced by silicon (Si) anodes during lithiation/delithiation cycles often triggers mechanical-electrochemical failures, undermining their utility in high-energy-density lithium-ion batteries (LIBs). Herein, we propose a sub micro-nano-structured Si based material to address the persistent challenge of mechanic-electrochemical coupling issue during cycling. The mesoporous Si-based composite submicrospheres (M-Si/SiO/CS) with a high Si/SiOcontent of 84.6 wt.% is prepared by magnesiothermic reduction of mesoporous SiOsubmicrospheres followed by carbon coating process. M-Si/SiO/CS anode can maintain a high specific capacity of 740 mAh gat 0.5 A gafter 100 cycles with a lower electrode thickness swelling rate of 63%, and exhibits a good long-term cycling stability of 570 mAh gat 1 A gafter 250 cycles. This remarkable Li-storage performance can be attributed to the synergistic effects of the hierarchical structure and SiOframeworks. The spherical structure mitigates stress/strain caused by the lithiation/delithiation, while the internal mesopores provide buffer space for Si expansion and obviously shorten the diffusion path for electrolyte/ions. Additionally, the amorphous SiOmatrix not only servers as support for structure stability, but also facilitates the rapid formation of a stable solid electrolyte interphase layer. This unique architecture offers a potential model for designing high-performance Si-based anode for LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad4cf2DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
8
mah gat
8
gat gafter
8
construction micro-nano-structured
4
micro-nano-structured silicon
4
silicon based
4
based anode
4
anode lithium-ion
4
batteries volume
4
volume change
4

Similar Publications

Hazardous electrolyte releasement and transformation mechanism during water protected spent lithium-ion batteries crushing.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240,  PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:

Wet-crushing with aqueous media protection is considered safer and more efficient than common inert-gas protected dry-crushing in preprocessing spent lithium-ion batteries (LIBs). However, it is also accompanied with the releasement and transformation of hazardous electrolyte, while the mechanisms and pollution impact yet remain unknown. Based on a self-built wet-crushing system, this topic was systematically investigated here.

View Article and Find Full Text PDF

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Using High-Entropy Configuration Strategy to Design Spinel Lithium Manganate Cathodes with Remarkable Electrochemical Performance.

Small

January 2025

National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMnO is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn-Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMnO for decades.

View Article and Find Full Text PDF

CaCoO/rGO was prepared by combining a sol-gel strategy and mechanical ball milling method. The Rietveld refinement results demonstrated a single-phase structure with a monoclinic symmetry. When utilized as an anode for lithium-ion batteries, it exhibited excellent rate performance and electrochemical stability due to the significantly decreasing particle size as well as the formation of a conductive rGO network in the composite after ball milling.

View Article and Find Full Text PDF

Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMnO toward Long-Life Lithium-Ion Batteries.

Nano Lett

January 2025

Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.

Spinel lithium manganese oxide (LiMnO, LMO) is a promising cathode material with nontoxicity, high operating voltage, and low cost. However, structural collapse during battery cycling ─ caused by Mn dissolution and the Jahn-Teller effect ─ is a critical disadvantage, reducing cycle retention, particularly at high temperatures. In this study, to solve these critical issues, we introduce Cu(HITP) (CuHITP; HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a conductive two-dimensional (2D) metal-organic framework (MOF) as a surface coating material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!