One-carbon unit supplementation fuels purine synthesis in tumor-infiltrating T cells and augments checkpoint blockade.

Cell Chem Biol

Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA. Electronic address:

Published: May 2024

AI Article Synopsis

  • Nucleotides are crucial for energy transfer and nucleic acid production, and this study investigates how tumor-infiltrating T cells synthesize purine nucleotides primarily through de novo pathways, particularly during a shortage of one-carbon units.
  • Supplementing one-carbon units using formate infusions enhances purine synthesis in these T cells and supports anti-tumor immunity.
  • The research shows that methanol, as a formate pro-drug, can increase formate levels safely and significantly improve outcomes in tumor treatments, highlighting the potential for targeting metabolic deficiencies in cancer therapy.

Article Abstract

Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate contributions to purine nucleotides from salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic or lymph node T cells) synthesize purines de novo. Shortage of 1C units for T cell purine synthesis is accordingly a potential bottleneck for anti-tumor immunity. Supplementing 1C units by infusing formate drives formate assimilation into purines in tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling kinetic control of formate production. Safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade in MC38 tumors, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2024.04.007DOI Listing

Publication Analysis

Top Keywords

purine synthesis
12
tumor-infiltrating t cells
12
checkpoint blockade
8
synthesis
5
formate
5
one-carbon unit
4
unit supplementation
4
supplementation fuels
4
purine
4
fuels purine
4

Similar Publications

RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.

View Article and Find Full Text PDF

8-OHdG and Nrf2 Protein are Expressed Consistently in Various T Stages of Invasive Breast Carcinoma.

Asian Pac J Cancer Prev

January 2025

Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

Objective: Oxidative stress prompts breast cancer cells to adapt by raising the lethal threshold and enhancing the antioxidant mechanism, thereby enabling survival and continuous proliferation that facilitates tumor progression. Nrf2 and 8-OHdG are indicative of oxidative stress activity and impact the progression of breast cancer. We aimed to analyze the expression of Nrf2 and 8-OHdG in various T stages of breast cancer in our hospital.

View Article and Find Full Text PDF

Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.

View Article and Find Full Text PDF

tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells.

J Exp Med

March 2025

Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.

View Article and Find Full Text PDF

We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!