A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ConvMedSegNet: A multi-receptive field depthwise convolutional neural network for medical image segmentation. | LitMetric

In order to achieve highly precise medical image segmentation, this paper presents ConvMedSegNet, a novel convolutional neural network designed with a U-shaped architecture that seamlessly integrates two crucial modules: the multi-receptive field depthwise convolution module (MRDC) and the guided fusion module (GF). The MRDC module's primary function is to capture texture information of varying sizes through multi-scale convolutional layers. This information is subsequently utilized to enhance the correlation of global feature data by expanding the network's width. This strategy adeptly preserves the inherent inductive biases of convolution while concurrently amplifying the network's ability to establish dependencies on global information. Conversely, the GF module assumes responsibility for implementing multi-scale feature fusion by connecting the encoder and decoder components. It facilitates the transfer of information between features that are separated over substantial distances through guided fusion, effectively minimizing the loss of critical data. In experiments conducted on public medical image datasets such as BUSI and ISIC2018, ConvMedSegNet outperforms several advanced competing methods, yielding superior results. Additionally, the code can be accessed at https://github.com/csust-yixin/ConvMedSegNet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108559DOI Listing

Publication Analysis

Top Keywords

medical image
12
multi-receptive field
8
field depthwise
8
convolutional neural
8
neural network
8
image segmentation
8
module mrdc
8
guided fusion
8
convmedsegnet multi-receptive
4
depthwise convolutional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!