Surface water nutrient pollution, the primary cause of eutrophication, remains a major environmental concern in Western Lake Erie despite intergovernmental efforts to regulate nutrient sources. The Maumee River Basin has been the largest nutrient contributor. The two primary nutrient sources are inorganic fertilizer and livestock manure applied to croplands, which are later carried to the streams via runoff and soil erosion. Prior studies of nutrient source attribution have focused on large watersheds or counties at annual time scales. Source attribution at finer spatiotemporal scales, which enables more effective nutrient management, remains a substantial challenge. This study aims to address this challenge by developing a generalizable Bayesian network model for phosphorus source attribution at the subwatershed scale (12-digit Hydrologic Unit Code). Since phosphorus release is uncertain, we combine excess phosphorus derived from manure and fertilizer application and crop uptake data, flow information simulated by the SWAT model, and in-stream water quality measurements using Approximate Bayesian Computation to derive a posterior that attributes phosphorus contributions to subwatersheds. Our results show significant variability in subwatershed-scale phosphorus release that is lost in coarse-scale attribution. Phosphorus contributions attributed to the subwatersheds are on average lower than the excess phosphorus estimated by the nutrient balance approach currently adopted by environmental agencies. Fertilizer contributes more soluble reactive phosphorus than manure, while manure contributes most of the unreactive phosphorus. While developed for the specific context of Maumee River Basin, our lightweight and generalizable model framework could be adapted to other regions and pollutants and could help inform targeted environmental regulation and enforcement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121120DOI Listing

Publication Analysis

Top Keywords

maumee river
12
river basin
12
source attribution
12
phosphorus
10
water quality
8
bayesian network
8
network model
8
nutrient sources
8
phosphorus release
8
excess phosphorus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!