Surface roughness influence on extracellular electron microbiologically influenced corrosion of C1018 carbon steel by Desulfovibrio ferrophilus IS5 biofilm.

Bioelectrochemistry

Department of Biological Sciences, and Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA; Department of Chemical & Biomolecular Engineering, and Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA. Electronic address:

Published: October 2024

Carbon steel microbiologically influenced corrosion (MIC) by sulfate reducing bacteria (SRB) is known to occur via extracellular electron transfer (EET). A higher biofilm sessile cell count leads to more electrons being harvested for sulfate reduction by SRB in energy production. Metal surface roughness can impact the severity of MIC by SRB because of varied biofilm attachment. C1018 carbon steel coupons (1.2 cm top working surface) polished to 36 grit (4.06 μm roughness which is relatively rough) and 600 grit (0.13 μm) were incubated in enriched artificial seawater inoculated with highly corrosive Desulfovibrio ferrophilus IS5 at 28 ℃ for 7 d and 30 d. It was found that after 7 d of SRB incubation, 36 grit coupons had a 11% higher sessile cell count at (2.0 ± 0.17) × 10 cells/cm, 52% higher weight loss at 22.4 ± 5.9 mg/cm (1.48 ± 0.39 mm/a uniform corrosion rate), and 18% higher maximum pit depth at 53 μm compared with 600 grit coupons. However, after 30 d, the differences diminished. Electrochemical tests with transient information supported the weight loss data trends. This work suggests that a rougher surface facilitates initial biofilm establishment but provides no long-term advantage for increased biofilm growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2024.108731DOI Listing

Publication Analysis

Top Keywords

carbon steel
12
surface roughness
8
extracellular electron
8
microbiologically influenced
8
influenced corrosion
8
c1018 carbon
8
desulfovibrio ferrophilus
8
ferrophilus is5
8
sessile cell
8
cell count
8

Similar Publications

Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

In recent years, the anti-corrosive properties of natural extracts as environmentally friendly inhibitors have gained considerable interest. This study evaluates the potential of ( L.) essential oil (), collected from Salé, Morocco, as a corrosion inhibitor for mild steel in 1 M HCl medium.

View Article and Find Full Text PDF

The behavior of low-carbon steels (LCSs), a high-strength steel and a nickel-chromium alloy in HCl solutions in the presence of N-containing organic substances has been studied. N-containing organic substances that comprise 1,2,4-triazole in their structure (substance I and substance II) provide comprehensive protection of various steel grades from corrosion and hydrogen absorption by the metal bulk in HCl solutions under both isobaric and isochoric conditions. All the compounds studied reduce, to varying degrees, the concentration of hydrogen adsorbed and absorbed by steel in HCl solutions.

View Article and Find Full Text PDF

The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel.

Materials (Basel)

January 2025

Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!