Assessing the quality and eco-beneficial microbes in the use of silkworm excrement compost.

Waste Manag

Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China. Electronic address:

Published: June 2024

Sericulture has become widespread globally, and the utilization of artificial diets produces a substantial quantity of silkworm excrement. Although silkworm excrement can be composted for environmentally friendly disposal, the potential utility of the resulting compost remains underexplored. The aim of this study was to assess the quality of this unique compost and screen for eco-beneficial microbes, providing a new perspective on microbial research in waste management, especially in sustainable agriculture. The low-concentration compost application exhibited a greater plant growth-promoting effect, which was attributed to an appropriate nutritional value (N, P, K, and dissolved organic matter) and the presence of plant growth-promoting bacteria (PGPB) within the compost. Encouraged by the "One Health" concept, the eco-benefits of potent PGPB, namely, Klebsiella pneumoniae and Bacillus licheniformis, in sericulture were further evaluated. For plants, K. pneumoniae and B. licheniformis increased plant weight by 152.44 % and 130.91 %, respectively. We also found that even a simple synthetic community composed of the two bacteria performed better than any single bacterium. For animals, K. pneumoniae significantly increased the silkworm (Qiufeng × Baiyu strain) cocoon shell weight by 111.94 %, which could increase sericulture profitability. We also elucidated the mechanism by which K. pneumoniae assisted silkworms in degrading tannic acid, a common plant-derived antifeedant, thereby increasing silkworm feed efficiency. Overall, these findings provide the first data revealing multiple beneficial interactions among silkworm excrement-derived microbes, plants, and animals, highlighting the importance of focusing on microbes in sustainable agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.05.015DOI Listing

Publication Analysis

Top Keywords

silkworm excrement
12
eco-beneficial microbes
8
sustainable agriculture
8
plant growth-promoting
8
silkworm
6
compost
5
assessing quality
4
quality eco-beneficial
4
microbes
4
microbes silkworm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!