Replacing the anodic oxygen evolution reaction (OER) in water splitting with 5-hydroxymethylfurfural oxidation reaction (HMFOR) can not only reduce the energy required for hydrogen production but also yield the valuable chemical 2,5-furandicarboxylic acid (FDCA). Co-based catalysts are known to be efficient for HMFOR, with high-valent Co being recognized as the main active component. However, efficiently promoting the oxidation of Co to produce high-valent reactive species remains a challenge. In this study, Ni-doped CoTe (CoNiTe) nanorods were prepared as efficient catalysts for HMFOR, achieving a high HMFOR current density of 65.3 mA cm at 1.50 V. Even after undergoing five successive electrolysis processes, the Faradaic efficiency (FE) remained at approximately 90.7 %, showing robust electrochemical durability. Mechanistic studies indicated that Ni doping changes the electronic configuration of Co, enhancing its charge transfer rate and facilitating the oxidation of Co to high-valent CoO species. This work reveals the effect of Ni doping on the reconfiguration of the active phase during HMFOR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.05.050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!