Single-Shot Readout of a Nuclear Spin in Silicon Carbide.

Phys Rev Lett

Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.

Published: May 2024

Solid-state qubits with a photonic interface is very promising for quantum networks. Color centers in silicon carbide have shown excellent optical and spin coherence, even when integrated with membranes and nanostructures. Additionally, nuclear spins coupled with electron spins can serve as long-lived quantum memories. Pioneering work previously has realized the initialization of a single nuclear spin and demonstrated its entanglement with an electron spin. In this Letter, we report the first realization of single-shot readout for a nuclear spin in SiC. We obtain a deterministic nuclear spin initialization and readout fidelity of 94.95% with a measurement duration of 1 ms. With a dual-step readout scheme, we obtain a readout fidelity as high as 99.03% within 0.28 ms by sacrificing the success efficiency. Our Letter complements the experimental toolbox of harnessing both electron and nuclear spins in SiC for future quantum networks.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.180803DOI Listing

Publication Analysis

Top Keywords

nuclear spin
16
single-shot readout
8
readout nuclear
8
silicon carbide
8
quantum networks
8
nuclear spins
8
readout fidelity
8
nuclear
6
spin
6
spin silicon
4

Similar Publications

The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts.

Molecules

December 2024

Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland.

Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances.

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.

View Article and Find Full Text PDF

The role of spin diffusion in endogenous metal ions DNP.

J Chem Phys

January 2025

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.

The sensitivity of solid state nuclear magnetic resonance spectroscopy can be enhanced via dynamic nuclear polarization (DNP) using unpaired electrons as polarizing agents. In metal ions based (MI)-DNP, paramagnetic metal ions are introduced as dopants into inorganic materials serving as endogenous polarizing agents. Having polarizing agents as part of the structure enables signal enhancements within the bulk of the material.

View Article and Find Full Text PDF

In this study, we worked at the CCSD/aug-cc-pVTZ level to obtain the conformers of glycine in its neutral and zwitterionic forms in the gas and water phases. We then computed the NMR properties (spin-spin coupling constants and nuclear magnetic shieldings) at the SOPPA/aug-cc-pVTZ-J level. We attempt to elucidate the apparent discrepancy arising from two previous works by Valverde et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!