Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A temperature difference between two electrolyte-immersed electrodes often yields a voltage Δψ between them. This electrolyte Seebeck effect is usually explained by cations and anions flowing differently in thermal gradients. However, using molecular simulations, we found almost the same Δψ for cells filled with pure water as with aqueous alkali halides. Water layering and orientation near polarizable electrodes cause a large temperature-dependent potential drop χ there. The difference in χ of hot and cold electrodes captures most of the thermovoltage, Δψ≈χ_{hot}-χ_{cold}.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.186201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!