Retinal disorders pose a serious threat to world healthcare because they frequently result in visual loss or impairment. For retinal disorders to be diagnosed precisely, treated individually, and detected early, deep learning is a necessary subset of artificial intelligence. This paper provides a complete approach to improve the accuracy and reliability of retinal disease identification using images from OCT (Retinal Optical Coherence Tomography). The Hybrid Model GIGT, which combines Generative Adversarial Networks (GANs), Inception, and Game Theory, is a novel method for diagnosing retinal diseases using OCT pictures. This technique, which is carried out in Python, includes preprocessing images, feature extraction, GAN classification, and a game-theoretic examination. Resizing, grayscale conversion, noise reduction using Gaussian filters, contrast enhancement using Contrast Limiting Adaptive Histogram Equalization (CLAHE), and edge recognition via the Canny technique are all part of the picture preparation step. These procedures set up the OCT pictures for efficient analysis. The Inception model is used for feature extraction, which enables the extraction of discriminative characteristics from the previously processed pictures. GANs are used for classification, which improves accuracy and resilience by adding a strategic and dynamic aspect to the diagnostic process. Additionally, a game-theoretic analysis is utilized to evaluate the security and dependability of the model in the face of hostile attacks. Strategic analysis and deep learning work together to provide a potent diagnostic tool. This suggested model's remarkable 98.2% accuracy rate shows how this method has the potential to improve the detection of retinal diseases, improve patient outcomes, and address the worldwide issue of visual impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/XST-240027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!