Research on multi-dimensional intelligent quantitative assessment of upper limb function based on kinematic parameters.

Technol Health Care

Institute of Rehabilitation Engineering and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

Published: July 2024

Background: Rehabilitation assessment is a critical component of rehabilitation treatment.

Objective: This study focuses on a comprehensive analysis of patients' movement performance using the upper limb rehabilitation robot. It quantitatively assessed patients' motor control ability and constructed an intelligent grading model of functional impairments. These findings contribute to a deeper understanding of patients' motor ability and provide valuable insights for personalized rehabilitation interventions.

Methods: Patients at different Brunnstrom stages underwent rehabilitation training using the upper limb rehabilitation robot, and data on the distal movement positions of the patients' upper limbs were collected. A total of 22 assessment metrics related to movement efficiency, smoothness, and accuracy were extracted. The performance of these assessment metrics was measured using the Mann-Whitney U test and Pearson correlation analysis. Due to the issue of imbalanced sample categories, data augmentation was performed using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm based on weighted sampling, and an intelligent grading model of functional impairment based on the Extreme Gradient Boosting Tree (XGBoost) algorithm was constructed.

Results: Sixteen assessment metrics were screened. These metrics were effectively normalized to their maximum values, enabling the derivation of quantitative assessment scores for motor control ability across the three dimensions through a weighted fusion approach. Notably, when applied to the data-enhanced dataset, the intelligent grading model exhibited remarkable improvement, achieving an accuracy rate exceeding 0.98. Moreover, significant enhancements were observed in terms of precision, recall, and f1-score.

Conclusion: The research findings demonstrate that this study enables the quantitative assessment of patients' motor control ability and intelligent grading of functional impairments, thereby contributing to the efficiency enhancement of clinical rehabilitation assessment. Moreover, this method resolves the issues associated with the subjectivity and prolonged periods of traditional rehabilitation assessment methods.

Download full-text PDF

Source
http://dx.doi.org/10.3233/THC-231076DOI Listing

Publication Analysis

Top Keywords

intelligent grading
16
quantitative assessment
12
upper limb
12
rehabilitation assessment
12
patients' motor
12
motor control
12
control ability
12
grading model
12
assessment metrics
12
assessment
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!