Plant growth-promoting rhizobacteria (PGPR) applications have emerged as an ideal substitute for synthetic chemicals by their ability to improve plant nutrition and resistance against pathogens. In this study, we isolated fourteen root endophytes from healthy wheat roots cultivated in Tunisia. The isolates were identified based from their 16S rRNA gene sequences. They belonged to Bacillota and Pseudomonadota taxa. Fourteen strains were tested for their growth-promoting and defense-eliciting potentials on durum wheat under greenhouse conditions, and for their in vitro biocontrol power against Fusarium culmorum, an ascomycete responsible for seedling blight, foot and root rot, and head blight diseases of wheat. We found that all the strains improved shoot and/or root biomass accumulation, with Bacillus mojavensis, Paenibacillus peoriae and Variovorax paradoxus showing the strongest promoting effects. These physiological effects were correlated with the plant growth-promoting traits of the bacterial endophytes, which produced indole-related compounds, ammonia, and hydrogen cyanide (HCN), and solubilized phosphate and zinc. Likewise, plant defense accumulations were modulated lastingly and systematically in roots and leaves by all the strains. Testing in vitro antagonism against F. culmorum revealed an inhibition activity exceeding 40% for five strains: Bacillus cereus, Paenibacillus peoriae, Paenibacillus polymyxa, Pantoae agglomerans, and Pseudomonas aeruginosa. These strains exhibited significant inhibitory effects on F. culmorum mycelia growth, sporulation, and/or macroconidia germination. P. peoriae performed best, with total inhibition of sporulation and macroconidia germination. These finding highlight the effectiveness of root bacterial endophytes in promoting plant growth and resistance, and in controlling phytopathogens such as F. culmorum. This is the first report identifying 14 bacterial candidates as potential agents for the control of F. culmorum, of which Paenibacillus peoriae and/or its intracellular metabolites have potential for development as biopesticides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101125 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300791 | PLOS |
Plant Pathol J
December 2024
Department of Applied Bioscience, Dong-A University, Busan 49315, Korea.
Endophytic bacteria residing within plant seeds are increasingly recognized for their potential to enhance plant growth and provide biocontrol against pathogens. Despite this, seed-borne endophytes remain underexplored in many crops, including tomato. In this study, we isolated and characterized bacterial endophytes from tomato seeds and evaluated their plant growth-promoting traits and antifungal activities.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
August 2024
Departamento de Ciência do Solo, Setor de Biologia, Microbiologia e Processos Biológicos do Solo, Universidade Federal de Lavras (UFLA), Caixa Postal 3037, Lavras, Minas Gerais, CEP 37200- 900, Brazil.
Bacteria can solubilize phosphorus (P) through the secretion of low-molecular-weight organic acids and acidification. However, the genes involved in the production of these organic acids are poorly understood. The objectives of this study were to verify the calcium phosphate solubilization and the production of low-molecular-weight organic acids by diverse genera of phosphate solubilizing bacterial strains (PSBS); to identify the genes related to the synthesis of the organic acids in the genomes of these strains and; to evaluate growth and nutrient accumulation of maize plants inoculated with PSBS and fertilized with Bayóvar rock phosphate.
View Article and Find Full Text PDFPLoS One
May 2024
Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France.
Plant growth-promoting rhizobacteria (PGPR) applications have emerged as an ideal substitute for synthetic chemicals by their ability to improve plant nutrition and resistance against pathogens. In this study, we isolated fourteen root endophytes from healthy wheat roots cultivated in Tunisia. The isolates were identified based from their 16S rRNA gene sequences.
View Article and Find Full Text PDFPlant Cell Rep
March 2024
College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China.
Both bacterial and fungal endophytes exhibited one or more plant growth-promoting (PGP) traits. Among these strains, the Paenibacillus peoriae SYbr421 strain demonstrated the greatest activity in the direct biotransformation of tuber powder from D. nipponica into diosgenin.
View Article and Find Full Text PDFBiotechniques
May 2024
Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350108, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!