The electric power sector is the primary contributor to carbon emissions in China. Considering the context of dual carbon goals, this paper examines carbon emissions within China's electricity sector. The research utilizes the LMDI approach for methodological rigor. The results show that the cumulative contribution of economies scale, power consumption factors and energy structure are 114.91%, 85.17% and 0.94%, which contribute to the increase of carbon emissions, the cumulative contribution of power generation efficiency and ratio of power dissipation to generation factor are -19.15% and -0.01%, which promotes the carbon reduction. The decomposition analysis highlights the significant influence of economic scale on carbon emissions in the electricity industry, among the seven factors investigated. Meanwhile, STIRPAT model, Logistic model and GM(1,1) model are used to predict carbon emissions, the average relative error between actual carbon emissions and the predicted values are 0.23%, 8.72% and 7.05%, which indicates that STIRPAT model is more suitable for medium- to long-term predictions. Based on these findings, the paper proposes practical suggestions to reduce carbon emissions and achieve the dual carbon goals of the power industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101092PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302068PLOS

Publication Analysis

Top Keywords

carbon emissions
28
carbon
12
dual carbon
12
china's electricity
8
electricity industry
8
carbon goals
8
cumulative contribution
8
stirpat model
8
emissions
7
power
5

Similar Publications

Since agriculture is a major source of greenhouse gas emissions, accurately calculating these emissions is essential for simultaneously addressing climate change and food security challenges. This paper explores the critical role of trade in transferring agricultural greenhouse gas (AGHG) emissions throughout global agricultural supply chains. We develop a detailed AGHG emission inventory with comprehensive coverage across a wide range of countries and emission sources at first.

View Article and Find Full Text PDF

The G20 countries are responsible for around 75% of the world's greenhouse gas (GHG) emissions, including the use of natural resources. In this regard, the role of globalization in achieving environmental sustainability is a relatively new topic of concern. As a result, the present study considers how globalization and natural resources affect GHG emissions, as well as the roles that renewable energy consumption and urbanization play in the G20 countries between 1990 and 2020.

View Article and Find Full Text PDF

Hydrogen-based electric vehicles such as Fuel Cell Electric Vehicles (FCHEVs) play an important role in producing zero carbon emissions and in reducing the pressure from the fuel economy crisis, simultaneously. This paper aims to address the energy management design for various performance metrics, such as power tracking and system accuracy, fuel cell lifetime, battery lifetime, and reduction of transient and peak current on Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Li-ion batteries. The proposed algorithm includes a combination of reinforcement learning algorithms in low-level control loops and high-level supervisory control based on fuzzy logic load sharing, which is implemented in the system under consideration.

View Article and Find Full Text PDF

The transit signal priority, as an effective method to address public transport operation issues, has been widely applied. With the continuous advancement of connected technology, research on developing transit signal priority strategies using vehicle-to-everything technology is gaining increasing attention. However, current traffic signal priority studies primarily focus on optimizing bus speeds on dedicated bus lanes, neglecting the adverse impacts of private vehicle queuing on priority strategies, as well as the carbon emissions resulting from speed fluctuations.

View Article and Find Full Text PDF

Background: Climate change is the 21st century's biggest global health threat, endangering health care systems worldwide. Health care systems, and hospital care in particular, are also major contributors to greenhouse gas emissions.

Objectives: This study used a systematic search and screening process to review the carbon footprint of hospital services and care pathways, exploring key contributing factors and outlining the rationale for chosen services and care pathways in the studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!