Phosphorylation of Doc2 by EphB2 modulates Munc13-mediated SNARE complex assembly and neurotransmitter release.

Sci Adv

Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China.

Published: May 2024

At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100570PMC
http://dx.doi.org/10.1126/sciadv.adi7024DOI Listing

Publication Analysis

Top Keywords

snare complex
16
complex assembly
16
neurotransmitter release
16
release
6
doc2
6
snare
5
munc13
5
phosphorylation doc2
4
doc2 ephb2
4
ephb2 modulates
4

Similar Publications

Syntaxin 4-enhanced plasma membrane repair isindependent of dysferlin in skeletal muscle.

Am J Physiol Cell Physiol

December 2024

Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.

Plasma membrane repair (PMR) restores membrane integrity of cells, preventing cell death in vital organs, and has been studied extensively in skeletal muscle. Dysferlin, a sarcolemmal Ca-binding protein, plays a crucial role in PMR in skeletal muscle. Previous studies have suggested that PMR employs membrane trafficking and membrane fusion, similar to neurotransmission.

View Article and Find Full Text PDF

Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1.

Biophys J

December 2024

Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT; Nanobiology Institute, Yale University, West Haven, CT; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University. Electronic address:

Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood.

View Article and Find Full Text PDF

Background: Patent ductus arteriosus (PDA) is a congenital heart defect that requires closure to prevent complications like heart failure and pulmonary hypertension. Catheter-based closure using devices such as the Amplatzer duct occluder is the preferred method due to its minimally invasive nature. However, device embolization is a rare but recognized complication, particularly in small children or high-flow PDAs.

View Article and Find Full Text PDF

What Do I Do if the Valve Don't Pass? Use a Snare Catheter!

Clin Case Rep

December 2024

Department of Cardiology Clermont-Ferrand University Hospital Center, CNRS, Clermont Auvergne University Clermont-Ferrand France.

We report a case of a complex transcatheter aortic valve implantation (TAVI) complicated by severe calcifications, which prevented the delivery system from advancing through the aortic valve. To address this challenge, we employed an innovative solution using a Snare catheter. This approach enabled stabilization and guidance of the delivery system, facilitating the crossing of the calcified obstruction and the successful completion of the procedure.

View Article and Find Full Text PDF

The negative interference of treatments between the acetylcholinesterase inhibitor rivastigmine and the tau aggregation inhibitor hydromethylthionine mesylate (HMTM) has been reported in Line 1 tau-transgenic mice, which overexpress a truncated species of tau protein that is found in the core of paired helical filaments in Alzheimer´s disease (AD). However, little is known about whether such interactions could affect synapses in mice overexpressing tau carrying pathogenic mutations. Here, we have used Line 66 (L66) mice which overexpress full-length human tau carrying the P301S mutation as a model in which tau accumulates in synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!