Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
State-resolved experiments can provide fundamental insight into the mechanisms behind chemical reactions. Here, we describe our methods for characterizing state-resolved experiments probing the outcome of the collision between CO2 molecules and surfaces. We create a molecular beam from a supersonic expansion that passes through an ultra-high vacuum system. The CO2 is vibrationally excited by a continuous wave infrared (IR) laser using rapid adiabatic passage. We attenuate the fractional excitation using a CO2 absorption cell in the IR beam path. We combine Monte Carlo simulations and molecular beam energy measurements to find the initial rotational state distribution of the molecular beam. We find that our pure CO2 beam from a 300 K source has a rotational temperature of ∼26 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0203641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!