A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Points of interest linear attention network for real-time non-rigid liver volume to surface registration. | LitMetric

Background: In laparoscopic liver surgery, accurately predicting the displacement of key intrahepatic anatomical structures is crucial for informing the doctor's intraoperative decision-making. However, due to the constrained surgical perspective, only a partial surface of the liver is typically visible. Consequently, the utilization of non-rigid volume to surface registration methods becomes essential. But traditional registration methods lack the necessary accuracy and cannot meet real-time requirements.

Purpose: To achieve high-precision liver registration with only partial surface information and estimate the displacement of internal liver tissues in real-time.

Methods: We propose a novel neural network architecture tailored for real-time non-rigid liver volume to surface registration. The network utilizes a voxel-based method, integrating sparse convolution with the newly proposed points of interest (POI) linear attention module. POI linear attention module specifically calculates attention on the previously extracted POI. Additionally, we identified the most suitable normalization method RMSINorm.

Results: We evaluated our proposed network and other networks on a dataset generated from real liver models and two real datasets. Our method achieves an average error of 4.23 mm and a mean frame rate of 65.4 fps in the generation dataset. It also achieves an average error of 8.29 mm in the human breathing motion dataset.

Conclusions: Our network outperforms CNN-based networks and other attention networks in terms of accuracy and inference speed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17108DOI Listing

Publication Analysis

Top Keywords

linear attention
12
volume surface
12
surface registration
12
points interest
8
real-time non-rigid
8
non-rigid liver
8
liver volume
8
partial surface
8
registration methods
8
poi linear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!