Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1.

Cell Rep

Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA. Electronic address:

Published: May 2024

GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209873PMC
http://dx.doi.org/10.1016/j.celrep.2024.114229DOI Listing

Publication Analysis

Top Keywords

gpr133 signaling
12
modulation gpr133
8
gpr133 adgrd1
8
gpr133 esyt1
8
esyt1 knockdown
8
knockdown knockout
8
gpr133
7
esyt1
7
signaling
4
adgrd1 signaling
4

Similar Publications

Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1.

Cell Rep

May 2024

Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA. Electronic address:

GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133.

View Article and Find Full Text PDF

The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability.

Cell Rep

November 2023

Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA. Electronic address:

Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue.

View Article and Find Full Text PDF

PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma.

Cell Rep

July 2023

Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA. Electronic address:

The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma.

View Article and Find Full Text PDF

GPR133 (ADGRD1) is an adhesion G protein-coupled receptor that signals through Gαs and is required for growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133.

View Article and Find Full Text PDF

Activation of the adhesion G protein-coupled receptor GPR133 by antibodies targeting its N-terminus.

J Biol Chem

June 2022

Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA. Electronic address:

We recently demonstrated that GPR133 (ADGRD1), an adhesion G protein-coupled receptor involved in raising cytosolic cAMP levels, is necessary for growth of glioblastoma (GBM) and is de novo expressed in GBM relative to normal brain tissue. Our previous work suggested that dissociation of autoproteolytically generated N-terminal and C-terminal fragments of GPR133 at the plasma membrane correlates with receptor activation and signaling. To promote the goal of developing biologics that modulate GPR133 function, we investigated the effects of antibodies against the N-terminus of GPR133 on receptor signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!