The binding and function of β-arrestins are regulated by specific phosphorylation motifs present in G protein-coupled receptors (GPCRs). However, the exact arrangement of phosphorylated amino acids responsible for establishing a stable interaction remains unclear. We employ a 1D sequence convolution model trained on GPCRs with established β-arrestin-binding properties. With this approach, amino acid motifs characteristic of GPCRs that form stable interactions with β-arrestins can be identified, a pattern that we name "arreSTick." Intriguingly, the arreSTick pattern is also present in numerous non-receptor proteins. Using proximity biotinylation assay and mass spectrometry analysis, we demonstrate that the arreSTick motif controls the interaction between many non-receptor proteins and β-arrestin2. The HIV-1 Tat-specific factor 1 (HTSF1 or HTATSF1), a nuclear transcription factor, contains the arreSTick pattern, and its subcellular localization is influenced by β-arrestin2. Our findings unveil a broader role for β-arrestins in phosphorylation-dependent interactions, extending beyond GPCRs to encompass non-receptor proteins as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2024.114241 | DOI Listing |
J Exp Med
March 2025
Institute of Cancer Research, Shenzhen Bay Laboratory , Shenzhen, China.
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
January 2025
Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
Purpose: Mitochondrial dysfunction mediated by c-Jun N-terminal kinase (JNK) plays an important role in lipotoxic liver injury in nonalcoholic steatohepatitis (NASH). This study aims to investigate the pharmacological mechanism of Jiangzhi Granule (JZG), a Chinese herbal formula against NASH, with a focus on its regulation of JNK signaling-mediated mitochondrial function.
Methods: Hepatocytes were induced by palmitic acid (PA) for 24 h to establish an in vitro lipotoxic model, which was simultaneously treated with either JZG or vehicle control.
Molecules
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China.
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP).
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!